Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
cover
Irfan Musmarliansyah
Abstrak :
Penampakan mikrokalsifikasi dalam citra mammography sebagai suatu indikasi terjadinya kanker payudara seringkali menjadi kendala pendiagnosisan penyakit kanker. Variasi bentuk dan ukuran kalsifikasi serta kehomogenan dengan latar belakang tekstur merupakan faktor utama yang sering menjadi masalah dalam pengamatan visual biasa. Pemanfaatan Computer Aided Diagnosis (CAD) dalam bidang pengolahan citra memungkinkan suatu citra mamography diolah dan dianalisa dalam bentuk digital untuk mengurangi kendala dalam hal pendeteksian mikrokalsifikasi. Teknik pendeteksian mikrokalsifikasi serta unjuk kerjanya dengan menggunakan transformasi wavelet, peningkatan kontras citra dan metode statistik meliputi perhitungan skewness dan kurtosis pada citra mammography digital akan diterapkan dalam tesis ini, dimana hasil pendeteksian tersebut dijadikan sebagai "second opinion" bagi ahli radiologis dalam diagnosisnya. Hasil simulasi menunjukan secara visual bahwa unjuk kerja pendeteksian mikrokalsifikasi dengan teknik yang diterapkan mempunyai tingkat keefektifan hingga 96%.
The presence of clustered micro-calcifications is an early sign of breast cancer, however it's difficult to detect. Variation of shape and size of calcification is the main problem for detection process, beside the homogenous texture background. Computer-aided diagnosis (CAD) schemes on image processing have the potential of substantially increasing diagnostic accuracy in mammography. Performance of wavelet transform, enhance algorithm and statistical procedure for detection method are presented in this thesis as a second opinion for radiologist's interpretation of micro-calcifications. The simulation results show visually that detecting method was applied has 96% in an effectiveness level.
Depok: Fakultas Teknik Universitas Indonesia, 2000
T4640
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Novian Rahman Hakim
Abstrak :
Kanker payudara adalah salah satu kanker paling umum terjadi di kalangan wanita dan tingkat kelangsungan hidupnya cenderung rendah ketika stadiumnya ditemukan sudah tinggi. Untuk meningkatkan kelangsungan hidup kanker payudara, deteksi dini sangat penting. Ada dua cara untuk mendeteksi kanker payudara: diagnosis dini dan skrining. Untuk membuat diagnosa yang akurat pada stadium awal kanker payudara, munculnya massa dan mikro-kalsifikasi pada citra mamografi merupakan dua indikator penting. Beberapa Computer-Aided Detection (CADe) telah dikembangkan untuk mendukung ahli radiologi karena pendeteksian mikro-kalsifikasi penting dalam menegakkan diagnosis dan perawatan yang direkomendasikan berikutnya. Sebagian besar sistem CADe yang ada saat ini mulai menggunakan Convolutional Neural Network (CNN) untuk mengimplementasikan deteksi mikro-kalsifikasi pada mammogram dan hasil kuantitatifnya sangat memuaskan, rata-rata tingkat akurasinya lebih dari 90%. Penelitian ini melakukan pendekatan otomatis untuk mendeteksi lokasi setiap mikro-kalsifikasi pada citra mammogram yang lengkap dan secara sederhana. Total lebih dari 350 gambar dari dataset INbreast digunakan dalam studi penelitian ini serta implementasi menggunakan data lokal Rumah Sakit (RS) sebanyak 23 citra. Proses ini dapat membantu ahli radiologi untuk melakukan diagnosis dini dan meningkatkan akurasi deteksi wilayah mikro-kalsifikasi. Performa sistem yang diusulkan diukur berdasarkan nilai error Mean Squared Logarithmic Error (MSLE) sebagai teknik untuk mengetahui perbedaan antara nilai yang diprediksi oleh model yang diusulkan dan nilai sebenarnya, didapat nilai loss terbaik yang diperoleh adalah 0,05. Hasil validasi daring mendapatkan nilai sensitivitas sebesar 88.14%, presisi 91.6% dan akurasi sebesar 90.3%. Hasil implementasi pada data lokal RS menunjukkan model CADe dapat mendeteksi mikro-kalsifikasi dengan cukup baik. ......Breast cancer is one of the most common cancer among women and the survival rate tends to be low when its stage found high when treated. To improve breast cancer survival, early detection is critical. There are two ways of detection for breast cancer: early diagnosis and screening. To make an accurate diagnosis in the early stage of breast cancer, the appearance of masses and micro-calcifications on the mammography image are two important indicators. Several Computer-Aided Detection (CADe) have been developed to support radiologists because the automatic detection of micro-calcification is important for diagnosis and the next recommended treatment. Most of the current CADe systems at this time started using Convolutional Neural Network (CNN) to implement the micro-calcification detection in mammograms and their quantitative results are very satisfying, the average level of accuracy is more than 90%. This research conducts an automated approach to detect the location of any micro-calcification in the mammogram images with the complete image and in a simple way. A total more than 350 images from INbreast dataset were used in this research study and for implementation used 23 images from local hospital data. This process can help as an assistant to the radiologist for early diagnosis and increase the detection accuracy of the microcalcification regions. The proposed system performance is measured according to the error values of Mean Squared Logarithmic Error (MSLE) as the technique to find out the difference between the values predicted by the proposed model and the actual values, the best loss value obtained by the training model was achieved in 0.05. The results for data online validation for sensitivity is 88.14%, precision is 91.6% and accuracy is 90.3%. The CADe model can detect micro-calcification quite well using local hospital data.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hellen
Abstrak :
Penelitian skripsi ini meneliti dan menguji penggunaan web-application sebagai sarana antar-muka pengguna untuk menggunakan model segmentasi citra deteksi mikrokalsifikasi Tensorflow dari Hakim, et al. Penelitian ini dilakukan dengan memanfaatkan Flask sebagai backend dari web-application dan Bootstrap untuk mengatur tampilan website yang ditunjukkan ke pengguna. Selain itu, dimanfaatkan beberapa library Python seperti CV2 dan PIL dalam pemrosesan citra di web-application. Digunakan juga layanan komputasi awan Amazon Web Services (AWS) untuk mendeploy web-application agar dapat digunakan secara masif. Hasil penelitian adalah sebuah web-application untuk memprediksi letak, jumlah, dan kecenderungan persebaran mikrokalsifikasi. Dari penggunaan dan evaluasi web-applicationdiperoleh hasil evaluasi model segmentasi citra Hakim, et al. memiliki sensitivitas (86,27%), spesifitas (14%), dan F1-Score (64,23%) untuk keseluruhan citra format TIFF. Hal ini menunjukkan model memiliki kemungkinan besar memberi hasil false positive; waktu rata-rata yang dibutuhkan web-application untuk memprediksi citra berformat TIFF adalah 3 menit 20 detik, citra format DICOM berkisar 55 detik, dan citra format JPG berkisar 16 detik. ......This study is discussed about web-application utilization as user interface to make use Tensorflow image segmentation model for microcalcification detection from Hakim, et al. Study is done by using Flask as website backend also Bootstrap to manage website interface that will be shown. Besides that, some Python libraries such as CV2 and PIL are also applied for image processing in web-application. This study also uses cloud computing platform, which isĀ  Amazon Web Services (AWS) for web-application deployment in order to massive usage. Results of this study are a web application to predict location, sum, and spreads tendency for microcalcification. From web-application utilization and evaluation, obtained Hakim et,al, image segmentation model has sensitivity (86,27%), specificity (14%), and F1-Score (64,23%) for all image in TIFF format. This result shows the model has high probability to return false positive; the average time that web application needs to predict TIFF image is 3 minutes 20 seconds, DICOM image is around 55 seconds, and JPG images is around 16 seconds.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library