Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Lendriadi Agung
Abstrak :
Ekstraksi dan injeksi fluida di sumur-sumur lapangan geothermal Kamojang pada fase eksploitasi, menyebabkan terjadinya perubahan massa di reservoir. Time-lapse microgravity monitoring dilakukan untuk memantau kesetimbangan massa yang terjadi di reservoir akibat dari proses operasi dan produksi geothermal di Kamojang. Dengan periode monitoring yang optimal, time-lapse microgravity monitoring yang rutin dilakukan setiap tahun di Kamojang sejak tahun 2016 hingga tahun 2021 mampu menggambarkan dinamika perubahan massa fluida secara periodik di reservoir Kamojang. Daerah KWK menjadi daerah yang mengalami kehilangan massa paling besar, dengan area natural recharge di sekitar Barat Laut – Selatan - Tenggara dari tepi reservoir Kamojang. Masuknya fluida natural recharge dan sumur injeksi yang menyebar di area produksi Kamojang, menyebabkan defisit massa yang terjadi di Kamojang tidak sebesar dari yang diperkirakan, rata-rata 4 MTon fluida natural recharge masuk ke reservoir tiap tahunnya, yang menyebabkan kehilangan massa tahunan nya hanya sekitar -7 Mton per tahun. Namun strategi penambahan sumur injeksi di area KWK perlu segera dilakukan untuk menghindari kehilangan massa yang lebih besar yang dapat menyebabkan penurunan produksi yang lebih cepat. Penambahan kuantitas fluida injeksi sekitar 450 ton per jam dapat dilakukan untuk meningkatkan rasio injeksi dari 23% menjadi 58%, sehingga keberlangsungan dan kontinuitas operasi produksi geothermal di Kamojang dapat lebih terjaga dalam jangka panjang ......Fluid extraction and injection in the wells of Kamojang geothermal field during exploitation causes mass changes in the reservoir. Time-lapse microgravity monitoring is carried out to monitor the mass balance that occurs in the reservoir as a result of geothermal operations and production in Kamojang. With an optimal monitoring period, time-lapse microgravity monitoring routinely conducted every year in Kamojang from 2016 to 2021 are able to describe the dynamics of fluid mass changes in the Kamojang reservoir.The KWK area is the area that has highest deficit mass loss, with natural recharge areas around the Northwest - South - Southeast from the edge of the Kamojang proven reservoir. The natural recharge fluids and injection wells which spread in the Kamojang production area, causes the mass deficit that occurs in Kamojang less than expected, an average of 4 MTons of natural recharge fluid enters the reservoir each year, which causes an annual mass loss of only approximately -7 Mton per year. However, the strategy of adding injection wells in the KWK area needs to be implemented immediately to avoid greater mass loss which can lead to a faster decline production. The addition of an injection fluid quantity around 450 tons per hour can be done to increase the injection ratio from 23% to 58%, so that the sustainability and continuity of geothermal production in Kamojang can be maintained for the long term production.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yayan Sofyan
Abstrak :
Lapangan panasbumi Kamojang sudah memulai eksploitasi dan produksi sejak tahun 1983 dengan produksi uap sampai tahun 2000 telah mencapai 116.78 x 106 ton. Dengan rata-rata produksi dalam sepuluh tahun terakhir adalah 8.746.546 ton uap per tahun diperlukan manajemen reservoar untuk mengelola potensi reservoar secara optimal. Manajemen reservoar ini sangat diperlukan untuk mengatasi masalah penurunan produksi uap yang saat ini terjadi di Lapangan panasbumi Kamojang. Dalam mempertahankan stabilitas produksi, pengelolaan produksi dan reinjeksi sangat diperlukan dengan memperhatikan karakteristik reservoar dan perubahan-perubahannya. Monitoring geofisika dapat dilakukan untuk memantau kondisi reservoar secara berkala serta perubahan-perubahan yang terjadi. Metode microgravity dan microearthquake merupakan dua metode geofisika yang saling melengkapi dalam memonitor kondisi reservoar geothermal melalui pengukuran perubahan nilai medan gravitasi dan gempa mikro yang terjadi dalam waktu tertentu. Metode microgravity dilakukan untuk mengukur perubahan medan gravitasi antara tahun 1999 dengan tahun 2005 pada 51 titik benchmark gravitasi yang sama. Metode microearthquake dilakukan untuk melihat distribusi gempa mikro yang terjadi antara tahun 2004 sampai 2005 dengan pengamatan data setiap hari. Hasil interpretasi data microgravity dan microearthquake dari penelitian ini mengidentifikasi kemungkinan arah perubahan massa menuju NW dengan sebaran gempa mikro yang cukup aktif. Arah aliran fluida di dalam reservoar panasbumi diperkirakan cenderung mengarah NW mengikuti sesar normal. Hasil ini digunakan untuk saran penempatan lokasi sumur produksi baru lebih fokus ke arah NW dari pusat reservoar dan reinjeksi fluida pada arah SW di daerah perubahan medan gravitasi negatif. ......More than 116.78 x 106 ton of vapor has been exploited from the Kamojang Geothermal Field since 1983 to 2000. Reservoir management is intended to optimize the reservoir potential in order to produce an optimum long time energy production. Reservoir management is used to solve the decline production problem at the Kamojang Geothermal Field and to maintain the stability of the production which is influenced by reservoir material balance. Microgravity and Microearthquake (MEQ) methods are geophysical monitoring toolss that help the reservoir management to determine the reservoir condition and its changes periodically. Microgravity method is used to measure the changes of the gravity values between 1999 and 2005 with 51 gravity benchmarks. Microearthquake method is used to map the distribution of its hypocenters at Kamojang Geothermal Field occurred between: 2004 to 2005. The interpretation of the microgravity and microearthquake data at Kamojang Geothermal Field shows the direction of the mass changes to the north-west, the same direction of the distribution of the microearthquake occurrence. Fluid flow direction in the geothermal reservoir is considered trending to the north-west direction following the direction of the main fault. Based on this study it is recommended to locate the new production wells in the north-west direction while the injection wells to the south-west direction.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
T20917
UI - Tesis Membership  Universitas Indonesia Library
cover
Tavip Dwikorianto
Abstrak :

Eksploitasi fluida panasbumi akan mengakibatkan terjadinya perubahan fisik maupun kimia reservoir suatu lapangan geothermal. Hal ini terjadi di Lapangan Panasbumi Kamojang yang diproduksikan dalam empat periode, yaitu sebesar 30 MW sejak 1982 dan menjadi 140 MW sejak tahun 1987. Pada tahun 2005 produksinya menjadi 200 MW dan sejak tahun 2015 sehingga sampai saat ini produksi uap Lapangan Kamojang adalah 235 MW. Untuk melihat perubahan kondisi tersebut maka dilakukan survei Microgravity Time-lapse (gravitasi mikro time-lapse) guna mengetahui gambaran perubahan reservoir secara lebih luas berdasarkan perubahan nilai gravitasi reservoir dari waktu ke waktu yang diakibatkan terjadinya pengurangan masa dari kegiatan produksi fluida dan penambahan masa dari kegiatan injeksi fluida dalam reservoir. Secara umum, hasil kajian gravitasi mikro time-lapse dari tahun 1984 sampai 2018 menunjukkan adanya perubahan nilai gravitasi mikro negatif yang lebih banyak yang artinya terjadi defisit masa fluida yang lebih banyak dibanding penambahan masa fluida ke dalam reservoir. Hasil pemodelan 3- Dimensi menghasilkan defisit massa sekitar-168 MTon dan penambahan massa sekitar 33 MTon. Adanya defisit massa yang lebih banyak tersebut maka perlu dibuat konsep pengelolaan reservoir yang baik melalui skenario produksi dan reinjeksi guna pengelolaan Lapangan Panasbumi Kamojang berkelanjutan.

 


Geothermal fluid exploitation is expected to cause physical as well as chemical changes to the reservoir of a geothermal field. This is what happened to Kamojang Geothermal Field which has been producing for four periods, starting from the initial production capacity of 30 MW (1982) which became 140 MW (1987), then 200 MW (2008) and 235 MW since 2015 up to now. To observe changes of subsurface condition, Microgravity Time-Lapse as one of geophysical survey activity is carried out in order to obtain the reservoir changes in a wider view based on the changes of gravity value that due to the extracted and injected fluid mass and it is reflected to the rock density changes. Generally, the microgravity study result from 1984 until 2018 shows the existence of microgravity value changes which correlates to the amount of fluid mass produced is more much than the water mass which was reinjected back into the reservoir. It is proven in 3-D modelling which there is deficit mass around -168 MTon and addition mass around 33 MTon only. By knowing that is important to find good reservoir management through production and reinjection scheme for Kamojang Geothermal Field sustainable development.

 

2019
T54382
UI - Tesis Membership  Universitas Indonesia Library
cover
Rizky Adityo Prastama
Abstrak :
ABSTRACT ABSTRACT
Study of time lapse or 4D microgravity had been done to detect subsidence zone and its rate between 2014 and 2018 in Jakarta. Jakarta mostly covered by quaternary alluvium fan supplied from southern part of this city. Subsidence happened by several factors including excessive water exploitation, surface load, and the natural sinking properties of unconsolidated alluvium. By combining Simple Bouguer Anomaly SBA equation and gravity gradiometry methods, we can get the Bouguer density of 2.33 g cm3. Since subsidence occurred on near surface, regional gravity anomaly has been separated from SBA by combining spectrum analysis and moving average methods after implementing Fourier transform. The effect of groundwater movements removed from 4D microgravity anomaly with correlation to groundwater well data. The result shows that subsidence occurred all over the coastal area of Jakarta, with highest rate in North Jakarta 7 20 cm year . There also negative 4D microgravity anomaly in southern part of Jakarta that related to ground level uplifting.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eddy Supriyana
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2004
T39725
UI - Tesis Membership  Universitas Indonesia Library
cover
Rani Riantika
Abstrak :
Eksploitasi energi panas bumi menyebabkan terjadinya perubahan parameter fisik, seperti perubahan massa di dalam reservoir akibat aktivitas produksi dan injeksi. Aktivitas produksi dan injeksi, seperti ekstraksi fluida, injeksi fluida, serta pengisian fluida secara alami dapat memengaruhi kesetimbangan massa dan aliran fluida di reservoir. Untuk menjaga keberlanjutan eksploitasi energi panas bumi, perlu dilakukan kegiatan monitoring secara berkala untuk memantau kondisi massa dan aliran fluida di reservoir. Salah satu metode yang dapat dilakukan untuk monitoring kondisi reservoir adalah Microgravity 4D. Metode Microgravity 4D dapat mendeteksi perubahan medan gravitasi berdasarkan distribusi variasi densitas batuan baik secara lateral atau horizontal di dalam reservoir. Perubahan medan gravitasi berasoisiasi dengan volume massa batuan di reservoir, yang digunakan untuk menentukan nilai perubahan massa di zona proven produksi dan injeksi. Berdasarkan hasil penelitian ini, kesetimbangan massa fluida di reservoir menunjukkan adanya massa sebesar 17,92 MTon yang diprediksi berasal dari pengisian fluida secara alami yang bergerak melewati zona struktur graben di sekitar lapangan penelitian. Pengisian fluida secara alami tersebut memberikan kontribusi pada reservoir selama periode tersebut. ......The exploitation of geothermal energy causes changes in physical parameters, such as changes in mass within the reservoir due to production and injection activities. Production and injection activities, such as fluid extraction, fluid injection, and natural fluid recharge, can affect the mass balance and fluid flow in the reservoir. To maintain the sustainability of geothermal energy exploitation, regular monitoring activities are necessary to observe the mass and fluid flow conditions in the reservoir. One method that can be used for monitoring reservoir conditions is 4D Microgravity. The 4D Microgravity method can detect changes in the gravitational field based on the distribution of rock density variations, both laterally and horizontally within the reservoir. Changes in the gravitational field are associated with the volume of rock mass in the reservoir, which is used to determine the value of mass changes in the production and injection proven zone. Based on the results of this study, the mass balance of fluid in the reservoir indicates a mass of 17.92 MTon, predicted to come from natural fluid recharge moving through the graben structure zone around the research field. This natural fluid recharge contributes to the reservoir during the period studied.
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salma Salsabila Hakim
Abstrak :
Jakarta merupakan Ibukota Negara Kesatuan Republik Indonesia dan menjadi kota metropolitan terbesar. Untuk kegiatan sehari-hari, jumlah air bersih yang dibutuhkan masyarakat Jakarta sangatlah banyak. Salah satu sumber air bersih yang digunakan adalah air sumur. Namun, pada beberapa wilayah Jakarta air sumurnya tidak dapat digunakan karena terkontaminasi oleh air asin. Isu mengenai air asin di Jakarta sudah menjadi perbincangan para peneliti. Meskipun demikian, para peneliti masih memperdebatkan sumber dari air asin tersebut. Ada dua pendapat mengenai sumber air asin di Jakarta, yaitu berasal dari intrusi air laut dan berasal dari air fosil. Penelitian ini bertujuan untuk mengidentifikasi keberadaan intrusi air laut yang menjadi penyebab asinnya air tanah di Jakarta. Metode yang digunakan adalah First Horizontal Derivative (FHD) pada data time-lapse mikrogravitasi dan dikorelasikan dengan data sekunder berupa sampel air tanah. Pergerakan suatu fluida di bawah permukaan dapat diketahui dari nilai FHD. Hasil yang didapatkan menunjukkan adanya aliran fluida yang berarah barat laut – tenggara maupun timur laut – barat daya. Berdasarkan arah aliran fluida tersebut, dapat disimpulkan bahwa penyebab air asin di Jakarta adalah air laut yang terintrusi ke daratan. Intrusi air laut tersebut mengalir dan menyebar ke beberapa daerah di Jakarta. ......Jakarta is the capital city of Indonesia and also the largest metropolitan city. For daily activities, the amount of clean water needed by the people of Jakarta. One of the sources that used for clean water is groundwater. However, in several areas of Jakarta the groundwater cannot be used because it is contaminated by salt water. The issue of salt water in Jakarta has become a topic of discussion among researchers. But researchers are still debating the source of salt water. There are two opinions regarding the source of salt water in Jakarta, namely that is comes from sea water intrusion and it comes from connate water. This research aims to identify the presence of sea water intrusion which is the cause of the salty groundwater in Jakarta. The method used is First Horizontal Derivative (FHD) on time-lapse microgravity data and groundwater sample for the secondary data. The groundwater fluid movement can be known from the time-lapse FHD value. The results obtained indicate that there is a fluid flow in a northwest – southeast and northeast – southeast direction. Based on the direction of the fluid flow, it can be concluded that the cause of the salt water in Jakarta is sea water intruding onto land. The sea water intrusion flows and spreads to several areas in Jakarta.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Najah Isra Naim
Abstrak :
Telah dilakukan penelitian tentang laju penurunan muka tanah yang terjadi di Jakarta pada periode tahun 2018 – 2023. Laju penurunan ini dikorelasikan dengan penambahan volume penggunaan air tanah akibat pertumbuhan penduduk di Jakarta. Volume penggunaan air tanah di Jakarta didapatkan dengan mengurangkan kebutuhan air bersih dengan volume penggunaan air pipa (PAM JAYA) selama tahun 2018 – 2023. Laju pergerakan muka tanah dihitung berdasarkan pengukuran mikrogravitasi 4D yang dilakukan antara tahun 2018 dan 2023. Hasil penelitian menunjukkan bahwa Kecamatan Menteng mengalami penurunan muka tanah cukup tinggi dengan laju sebesar 8.4 cm/tahun dan Kecamatan Jatinegara mengalami kenaikan muka tanah paling tinggi dengan laju sebesar 10.3 cm/tahun. Terdapat korelasi linier antara volume penggunaan air tanah dengan laju penurunan muka tanah di Jakarta. Semakin banyak jumlah penduduk, semakin banyak air tanah yang digunakan, maka laju penurunan muka tanah akan semakin besar. ......A study has been conducted on the rate of land subsidence occurring in Jakarta during the period from 2018 to 2023. This subsidence rate is correlated with the increase in the volume of groundwater usage due to population growth in Jakarta. The volume of groundwater usage in Jakarta is determined by subtracting the volume of piped water usage (PAM JAYA) from the total demand for clean water during 2018 to 2023. The rate of land subsidence is calculated based on 4D microgravity measurements conducted in 2018 and 2023. The results show that the Menteng district experienced a significant land subsidence with a rate of 8.4 cm/year, while the Jatinegara district experienced the highest land uplift with a rate of 10.3 cm/year. There is a linear correlation between the volume of groundwater usage and the rate of land subsidence in Jakarta. As the population increases, the more groundwater is used, the greater the rate of land subsidence will be.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library