Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Yoga Dwi Adityaputra
Abstrak :
Pada saat ini perkembangan teknologi sudah semakin canggih. Hal ini ditunjukkan oleh banyaknya robot yang sudah banyak berperan dalam banyak kegiatan. Definisi robot itu sendiri merupakan suatu mesin yang dirancang untuk mempermudah pekerjaan manusia baik itu diprogram secara otomatis atau dikendalikan langsung oleh manusia. Sistem tanpa awak (Unmanned Control) pada wahana kendaraan adalah salah satu contohnya. Sistem tanpa awak ini mempunyai tujuan untuk melakukan penjelajahan di area yang mempunyai risiko tinggi dan berbahaya bagi manusia. Sistem ini banyak diterapkan baik pada wahana kendaraan darat, udara dan di atas maupun di bawah permukaan air. Wahana kendaraan dengan sistem tanpa awak yang berada di atas permukaan air disebut dengan USV (Unmanned Surface Vehicle), UAV (Unmanned Aerial Vehicle) untuk wahana kendaraan udara, dan Underwater ROV (Remotely Operated Vehicle) untuk wahana kendaraan di bawah permukaan air tanpa awak. Kategori Underwater ROV yang paling banyak dikembangkan saat ini adalah kategori Mini dan General. Kedua kategori tersebut rata-rata memiliki dimensi yang cukup besar dan sulit untuk dibawa berpindah-pindah tempat. Oleh karena itu penelitian ini bertujuan untuk membuat prototipe kedua dari Micro Class Underwater ROV sebagai penginspeksi lambung kapal yang memiliki kekedapan hingga 5 meter, mampu mempertahankan posisi secara otomatis, mampu menampilkan vision dari kamera secara real time dan memiliki manuver yang baik serta harga yang terjangkau. Penelitian ini diawali dengan merancang serta merakitkomponen mekanikal dan elektrikal, merancang sistem kontrol dan pemrograman serta algoritma untuk mengontrol prototipe. Selanjutnya dilakukan pengambilan data melalui pengujian sensor, kamera dan simulasi serta analisis performanya. Prototipe ini memiliki massa total 3.2 kg dan kedap hingga kedalaman 5 meter serta dapat stabil ke posisi semula dari gerakan roll ketika diberi gangguan dalam waktu 0,297 detik dengan konstanta P sebesar -682.49, konstanta I sebesar -2501.7383, dan konstanta D sebesar -45.7323. Ketiga konstanta ini membantu operator untuk mengontrol prototipe agar mendapatkan gerakan yang lebih baik. Prototipe ini dapat menyala dengan semua sistem bekerja secara maksimal selama 5.1 menit dan mampu menyala minimal selama 34.2 menit ketika sistem dipakai sewajarnya. Prototipe ini dapat menampilkan video maupun gambar secara real time yang dapat dilihat langsung oleh operator pada GCS (Ground Control Station), akan tetapi terjadi beberapa perbedaan dalam pengiriman data video pada resolusi 120p, 240p dan 480p. Pada resolusi 120p tidak mengalami delay, 240p mengalami rata-rata delay 281 ms dan pada resolusi 480p mengalami rata-rata delay 782 ms.
ABSTRACT
At this time the development of technology has become more sophisticated. This is indicated by the many robots that have a lot to play role in many activities. The definition of the robot itself is a machine designed to facilitate human work whether it is programmed automatically or directly controlled by humans. Unmanned Control on vehicle rides are one of the example. This unmanned system aims to explore areas that have high risks and dangerous to humans. This system is widely applied both on land vehicles, air and above or below the surface of the water. Vehicle with unmanned systems that are above the surface of the water is called USV (Unmanned Surface Vehicle), UAV (Unmanned Aerial Vehicle) for air vehicle rides, and Underwater ROV (Remotely Operated Vehicle) for vehicle rides under the surface of water. The most developed Underwater ROV category today is the Mini and General categories. This twocategories on average have quite large dimensions and are difficult to move around. Therefore this study aims to make a second prototype of Micro Underwater ROV Class as inspecting the hull of the ship which has a tightness of up to 5 meters, able to maintain its position automatically, able to display vision from the camera in real time and has good maneuverability and affordable prices. This research begins by designing and assembling mechanical and electrical components, designing control and programming systems and algorithms to control prototypes. Then the data is collected through testing sensors, cameras and simulations and performance analysis. This prototype has a total mass of 3.2 kg and is impermeable to a depth of 5 meters and can be stable to its original position from the roll motion when disturbed within 0.297 seconds with a P constant -682.49, a constant of I -2501.7383, and a constant of D -45.7323. These three constants help the operator to control the prototype in order to get better movement. This prototype can be lit with all systems working optimally for 5.1 minutes and able to run for a minimum of 34.2 minutes when the system is used appropriately. This prototype can display video and images in real time that can be seen directly by the operator on the GCS (Ground Control Station), but there are some differences in sending video data at a resolution of 120p, 240p and 480p. At a resolution of 120p there was no delay, 240p had an average delay of 281 ms and at a resolution of 480p had an average delay of 782 ms.

Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mega Rizki Hidayatullah
Abstrak :
Penelitian ini merupakan pengembangan kedua dari perancangan micro class underater ROV (Remotely Operated Vehicle). Underwater ROV merupakan sebuah wahana yang beroperasi di bawah permukaan air dan dikendalikan oleh remote kontrol. Micro class berarti wahana tersebut berbobot 3 sampai 5 kg. Fokus penelitian ini ada pada pengembangan sistem mekanikal, yaitu desain main body, desain sistem rangka, dan desain sistem thruster. Permodelan desain mekanik menggunakan bantuan software Computer Aided Design (CAD). Sistem mekanikal yang dibuat mengkonsiderasikan konsep positive stability, yaitu kondisi dimana sebuah objek akan selalu kembali kepada kondisi stabil setelah diberi gangguan. Hal ini didapatkan dengan mendesain prototipe yang memiliki titik buoyancy berada diatas titik berat. Pada desain yang dibuat, kondisi positive stability tercapai dengan jarak antar titik 30 mm. Di dalam desain main body ditentukan metode kedap air, yaitu penggunaan o-ring pada tutup main body, dan penggunaan resin serta katalis pada kabel yang terpasang masuk ke dalam main body. Metode kedap air tersebut dilakukan eksperimen pada kolam kedalaman 3 m dan tercapai karakteristik tingkat kedap air yang diinginkan serta memenuhi standar tingkat kedap air untuk underwater ROV, yaitu IP44. Pada desain sistem thruster, ditentukan menggunakan konfigurasi 6 thruster, dengan 4 thruster horizontal dan 2 thruster vertikal, dan dilakukan simulasi menggunakan software Computational Fluid Dynamics (CFD) pada 5 variasi sudut serang (α) dari propeller yang dimodelkan. Simulasi CFD dilakukan untuk mendapatkan thrust yang dihasilkan dan power yang dibutuhkan untuk tiap variasi sudut serang (α) propeller, sehingga dapat memilih sudut serang (α) yang paling optimal yang akan digunakan. Didapatkan sudut serang (α) yang paling optimal pada 40 derajat dengan nilai thrust 2546,84 N dan power yang dibutuhkan sebesar 117,07 kW saat propeller berputar dalam kondisi ideal yang melibatkan faktor drag dan viskos dari fluida dengan kecepatan putar maksimum motor 25590 RPM. Perkembangan lebih jauh dibutuhkan untuk membuktikan secara eksperimental konsep positive stability dan keefektifan penggunaan konfigurasi 6 thruster saat bermanuver di lapangan, serta penambahhan fitur-fitur lainnya.
This study is the second prototype development of micro class underwater ROV (Remotely Operated Vehicle). Underwater ROV is a device that operated underwater and controlled by remote control. The term micro class means that the device weight is around 3 to 5 kg. the focus of this study is on the development of a mechanical design system, such as main body design, frame system design, and thruster system design. The prototype is modeled with a Computer-Aided Design (CAD) software. One design consideration in modeling this prototype is positive stability, which is, a condition of an object will always go back to its stable states after force was given. This concept can be achieved by designing the prototype whereas the center of buoyancy is above the center of gravity. This condition was met and validated by CAD software which can locate both centers. In the software stated that the distance of both centers is 30 mm. Then the other design consideration is choosing a method of water tightening on the main body. Using an o-ring around the mouth of the main body and resin and its catalyst for the cable, which penetrates to inside the main body, is proven to be effective in avoiding leakage when submerging the prototype to 3 m depth of water. Water tightness standard rating for underwater ROV is also achieved, which is IP44. Then, configurations of 6 thrusters are chosen for the prototype, where 4 horizontal thrusters, and 2 vertical. This study also conducts an experiment using a simulation with Computational Fluid Dynamics (CFD) software. The purpose of this simulation is to find the most optimal angle of attack (α), in term of thrust generated and power usage, from 5 variant angle of attack (α) propeller. This simulation shows that 40 degrees angle of attack (α) propeller variant is the most optimal, with 2546,84 N thrust and 117,07 kW power is needed when the propeller is rotating at an angular velocity of 25590 RPM, which is the maximum angular velocity can be generated by the motor. Further development is required to validate and prove experimentally the concept of positive stability, and the effectiveness of 6 thruster configuration, also adding another feature to the prototype.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library