Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Nico
Abstrak :
Coronavirus Disease 2019 (COVID-19) adalah penyakit menular yang disebabkan oleh virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Virus ini pertama kali ditemukan di Wuhan China pada desember 2019 dan pertama kali masuk ke Indonesia pada 2 Maret 2020. Selama masa pandemi COVID-19 banyak terjadi lonjakan secara tiba-tiba pada jumlah kasus baru COVID-19 yang menunjukkan bahwa adanya kesulitan dalam mengantisipasi peningkatan penyebaran COVID-19. Skripsi ini membahas pemodelan jumlah kasus baru harian COVID-19 di Indonesia menggunakan Gaussian Mixture Model (GMM) dimana model ini merupakan salah satu Mixture Model. Mixture Model merupakan penjumlahan linear berbobot dari beberapa fungsi distribusi dimana masing-masing fungsi distribusi disebut sebagai komponen campuran. Pada GMM, setiap komponen campuran diasumsikan berdistribusikan Gaussian (Normal). Pada penelitian ini, dikonstruksi beberapa GMM dengan 2, 3 dan 4 jumlah komponen untuk pemodelan data jumlah kasus baru harian COVID-19 di Indonesia dari 1 Januari 2021 sampai 31 Maret 2022 dengan interval waktu 455 hari. Parameter dari setiap GMM tersebut diestimasi menggunakan metode maximum likelihood estimation (MLE) melalui algoritma Expectation-Maximization (EM). Berdasarkan nilai Akaike Information Criteria (AIC), diperoleh GMM dengan 4 komponen merupakan model terbaik untuk pemodelan data jumlah kasus baru harian COVID-19 di Indonesia. Dengan GMM 4 komponen, diperoleh probabilitas jumlah kasus baru harian COVID-19 di Indonesia kurang dari jumlah kasus harian terendah adalah 0,009598, lebih dari jumlah kasus harian rata-rata adalah 0,299443 dan lebih dari jumlah kasus harian tertinggi adalah 0,017669. ......Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This virus was first found in Wuhan, China in December 2019 and first got into Indonesia on March 2, 2020. During the pandemic, there are a lot of sudden spikes in new COVID-19 daily cases which indicates that there is a struggle in anticipating the sudden increase in COVID-19 transmission. This research discuss about the modeling of new COVID-19 daily cases in Indonesia using Gaussian Mixture Model (GMM) which is a part of Mixture Model. Mixture Model is a linear weighted sum of some distribution function where each function is called a mixture component. In GMM, every mixture components are assumed to be normally distributed. In this research, three GMMs with 2,3 and 4 components were constructed to model new COVID-19 daily cases in Indonesia from January 1, 2021 to March 31, 2022 with a total of 455 days of observation. The parameters of each GMM were estimated with maximum likelihood estimation (MLE) method through Expectation-Maximization (EM) algorithm. According to Akaike Information Criteria (AIC) value, it was found that GMM with 4 components was the best model for modeling new COVID-19 cases in Indonesia. With this model, the probability of new COVID-19 daily cases in Indonesia are less than the lowest daily cases is 0,009598, more than the average daily cases is 0,299443 and more than the highest daily cases is 0,017669.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Murni
Abstrak :
Model tingkat bunga yang akan dibahas pada Tesis ini adalah model ekuilibrium satu faktor, yaitu model Rendleman - Bartter (RB) yang diasumsikan dalam ukuran risk-neutral. Tesis ini membahas mengenai stabilitas model RB, yaitu stabilitas stokastik asimtotik dan stabilitas mean-square. Stabilitas model RB ini terkait dengan parameter model RB. Namun, nilai parameter model RB tidak diketahui nilainya sehingga untuk implementasi model diperlukan penaksiran parameter model RB. Penaksiran parameter model RB membutuhkan data historis tingkat bunga. Model RB terkait dengan data historis berada pada ukuran aktual (actual measure). Sedangkan, model RB berada pada ukuran riskneutral, sehingga sebelum menentukan taksiran parameter dilakukan perubahan ukuran pada model RB menggunakan Teorema Girsanov. Metode yang digunakan dalam penaksiran parameter adalah Maximum Likelihood Estimation (MLE) dan dilanjutkan dengan metode numerik Newton ? Raphson. Dengan menggunakan data tingkat bunga bulanan suatu zero-coupon bond dengan maturity time 5 tahun periode Januari tahun 1982 hingga Februari 2011 yang diunduh dari http://www.bankofengland.co.uk dapat diperoleh nilai taksiran parameter yang memenuhi stabilitas model RB.
The Rendleman-Bartter (RB) model is a one-factor equilibrium interest rate model under risk-neutral measure. This thesis presents the stability of RB model, that is, stochastically asymptotically stable and mean-square stable, and their stability corresponds to parameter RB model. However, in the application the value of parameters RB model is unknown and needs to be estimated. Parameter estimation of RB model requires historical data of interest rates under actual measure. Therefore, Girsanov Theorem is used to change measure. Also, Maximum Likelihood Estimation (MLE) and Newton-Raphson method can be used to estimate these parameters. Parameter estimators are obtained by data of a zero-coupon bond with maturity time of five years from January 1982 to February 2011. This data can be downloaded from http://www.bankofengland.co.u.
Depok: Universitas Indonesia, 2011
T28800
UI - Tesis Open  Universitas Indonesia Library
cover
Yudha Fernando
Abstrak :
Data waktu survival sering kali berdistribusi skewed. Dibandingkan dengan mean, median lebih sedikit dipengaruhi oleh data skewed sehingga lebih menarik untuk menganalisis median populasi dibandingkan dengan mean populasi. Median sampel acak merupakan estimator untuk median populasi. Distribusi asimptotik dari median sampel acak telah diketahui berdistribusi Normal. Namun, aproksimasi ini bekerja dengan baik untuk sampel acak yang berukuran cukup besar dan normalitas tidak berlaku pada sampel acak berukuran kecil. Dalam skripsi ini, diperkenalkan keluarga distribusi dari median sampel acak dari sembarang distribusi survival. Keluarga distribusi ini dibentuk dengan menggunakan statistik terurut dan mengasumsikan sampel acak berukuran ganjil. Sebagai kasus khusus, distribusi Bilal diperoleh dengan mengasumsikan sampel acak berukuran 3 dari distribusi Exponential. Distribusi Bilal dapat digunakan sebagai alternatif untuk memodelkan data waktu survival yang berbentuk upside-down bathtub, skewed positif, lancip, dan memiliki fungsi hazard yang berbentuk monoton naik. Penaksiran parameter distribusi Bilal dilakukan dengan menggunakan metode maximum likelihood estimation. Sebagai ilustrasi, dilakukan pemodelan data waktu tunggu hingga nasabah bank dilayani menggunakan distribusi Bilal dan distribusi pembanding, yaitu distribusi Rayleigh, Lindley, serta Half-Logistic. Hasil pemodelan menunjukkan bahwa distribusi Bilal lebih baik dalam memodelkan data tersebut dibandingkan dengan distribusi lainnya. ...... Survival times data often exhibit skewed distributions. Compared to the mean, median is less affected by skewed data, so it is more interesting to analyze the population median than population mean. Median of a random sample serves as an estimator for the population median. Distribution of the median of a random sample is known to be asymptotically Normal. However, the approximation works well when the sample size is sufficiently large and the normality on small samples should not be expected. This study introduces a family of distributions for the median of a random sample from any survival distribution. It is constructed using ordered statistics when assuming an odd sample size. Bilal distribution, a special case, is obtained when assuming a random sample of size 3 from an Exponential distribution. Bilal distribution offers an alternative to model survival times data with an upside-down bathtub, positively skewed, and taper shape, and monotonically increasing hazard function. Bilal distribution’s parameter is estimated by maximum likelihood estimation method. As an illustration, waiting times before service of bank customers data is modeled using Bilal distribution along with Rayleigh, Lindley, and Half-Logistic distributions as comparisons. Result shows that Bilal distribution outperforms other distributions in modeling the data.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library