Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 14 dokumen yang sesuai dengan query
cover
Deana Rosan
Abstrak :
Tugas akhir ini membahas tentang distribusi Kumaraswamy-geometrik yang merupakan distribusi probabilitas dari peubah acak diskrit yang dibangun dengan menggunakan metode Transformed-Transformer. Distribusi Kumaraswamy dapat membuat distribusi geometrik menjadi lebih fleksibel. Pembahasan meliputi fungsi distribusi, fungsi kepadatan probabilitas, perilaku limit, serta kasus khusus dari distribusi Kumaraswamy-geometrik. Karakteristik-karakteristik dari distribusi Kumaraswamy-geometrik yang meliputi modus, persentil, momen, fungsi pembangkit momen, dan fungsi pembangkit probabilitas juga akan dibahas pada tugas akhir ini. Selanjutnya, Metode Maksimum Likelihood digunakan dalam tugas akhir ini untuk mencari penaksir parameter dari distribusi Kumaraswamy-geometrik. Pada bagian akhir, akan digunakan data tentang jumlah klaim suatu asuransi kendaraan bermotor sebagai ilustrasi penggunaan distribusi Kumaraswamy-geometrik. ......This paper discusses about Kumaraswamy geometric distribution, a distribution of discrete random variable which formed by Transformed Transformer method. Kumaraswamy distribution can cause geometric distribution to be more flexible. This paper studies about distribution function, probability density function, limiting behavior, and special cases of Kumaraswamy geometric distribution. Some properties of Kumaraswamy geometric distribution such as mode, percentile, moments, moment generating function, and probability generating function are studied. Then, Maximum Likelihood method is used to estimate the parameters of Kumaraswamy geometric distribution. Finally, data about number of claims on a motor insurance is used to illustrate the use of Kumaraswamy geometric distribution.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S66040
UI - Skripsi Membership  Universitas Indonesia Library
cover
Basith Abi Ya'la
Abstrak :
Untuk memodelkan data cacah atau count data, model regresi yang biasa digunakan adalah model regresi Poisson. Model regresi Poisson mengasumsikan mean pada variabel respon sama dengan variansinya atau dikenal dengan istilah equidispersion. Apabila regresi Poisson digunakan untuk kondisi selain equidispersion, yaitu overdispersion dan underdispersion, maka nilai standard error dari estimasi parameter model menjadi tidak konsisten. Salah satu alternatif model regresi untuk mengatasi overdispersion maupun underdispersion adalah model regresi double Poisson. Model regresi double Poisson mengasumsikan variabel respon berdistribusi double Poisson. Distribusi double Poisson diperoleh menggunakan definisi dari keluarga distribusi double eksponensial. Parameter pada model regresi double Poisson diestimasi menggunakan metode maksimum likelihood dan solusi dari persamaan log-likelihoodnya diselesaikan menggunakan metode numerik Newton-Raphson. Penerapan model regresi double Poisson pada data kepiting tapal kuda menunjukan bahwa hanya variabel weight yang berpengaruh signifikan terhadap banyak kepiting satelit yang berkerumun ke sarang kepiting tapal kuda betina. Selain itu, interpretasi dari model regresi double Poisson juga serupa dengan model regresi Poisson sebab keduanya menggunakan fungsi penghubung log. ......To model count data, the most commonly used regression model is the Poisson regression model. The Poisson regression model assumes that the mean of the response variable is equal to the variance, also known as equidispersion. If Poisson regression is used for conditions other than equidispersion, namely overdispersion and underdispersion, then the standard error value of the estimated model parameters becomes inconsistent. One of the alternative regression models to overcome overdispersion and underdispersion is the double Poisson regression model. The double Poisson regression model assumes that the response variable has a double Poisson distribution. The double Poisson distribution is obtained using the definition of the double exponential distribution family. The parameters in the double Poisson regression model were estimated using the maximum likelihood method and the solutions of the log-likelihood equation were solved using the Newton-Raphson numerical method. The application of the double Poisson regression model to the horseshoe crab data shows that only the variable weight has a significant effect on the number of satellite crabs swarming to the nests of female horseshoe crabs. In addition, the interpretation of the double Poisson regression model is also similar to the Poisson regression model because both use a log link function.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raisa Pratiwi
Abstrak :
Error in variable model adalah model regresi dimana variabel independennya mengandung error. Hal ini dikarenakan nilai sebenarnya dari variabel independen tidak diketahui dan tidak dapat diukur dengan tepat sesuai dengan nilai sebenarnya (disebut dengan variabel independen yang tidak terobservasi), sehingga nilai sebenarnya dari variabel independen ini diwakilkan oleh nilai yang didapat dari suatu proses pengukuran yang belum tentu sesuai dengan nilai sebenarnya. Salah satu jenis error in variable model adalah classical error in variable model. Pada classical error in variable model, terdapat dua jenis variabel independen yang tidak terobservasi, yaitu fixed dan random. Pada penulisan tugas akhir ini akan dibahas mengenai penaksiran parameter pada classical error in variable model dimana variabel independen yang tidak terobservasi berdistribusi normal dengan menggunakan metode maksimum likelihood.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27776
UI - Skripsi Open  Universitas Indonesia Library
cover
Fenny Hermawan
Abstrak :
Overdispersion adalah masalah yang sering ditemukan saat memodelkan data cacah. Overdispersion ditandai dengan nilai variansi lebih besar dari mean. Penyebab overdispersion yang sering terjadi adalah banyaknya pengamatan bernilai nol pada suatu data. Akibatnya, distribusi Poisson yang memiliki nilai mean dan variansi yang sama (equidispersion) tidak cocok lagi untuk memodelkan data cacah tersebut. Salah satu alternatif distribusi untuk mengatasi kondisi overdispersion adalah distribusi Poisson-Lindley. Namun, distribusi Poisson-Lindley hanya memiliki fungsi massa peluang monoton turun. Untuk menambah fleksibilitas distribusi Poisson-Lindley, distribusi tersebut diberikan bobot berupa fungsi bobot binomial negatif. Pemberian fungsi bobot binomial negatif ini tetap menghasilkan distribusi dengan nilai variansi lebih besar dari mean sehingga tetap dapat digunakan untuk mengatasi kondisi overdispersion. Distribusi baru yang diperoleh disebut distribusi weighted negative binomial Poisson-Lindley (WNBPL). Pada tugas akhir ini dibahas mengenai proses pembentukan distribusi weighted negative binomial Poisson-Lindley, beberapa karakteristiknya, dan pengestimasian parameternya dengan metode maksimum likelihood. Sebagai ilustrasi, digunakan data frekuensi klaim pemegang polis untuk dimodelkan dengan distribusi WNBPL. ......Overdispersion is a common problem when modeling count data. Overdispersion is characterized by the variance greater than the mean. The cause of overdispersion that often occurs is the large number of zero-value observations in a data. As a result, the Poisson distribution which has the same mean and variance (equidispersion) is no longer suitable for modeling the count data. An alternative distribution to overcome the overdispersion condition is the Poisson-Lindley distribution. However, probability mass function of Poisson-Lindley is monotonic decreasing. To increase the flexibility of the Poisson-Lindley distribution, the distribution is given a weight function in the form of a negative binomial weight function. Giving this negative binomial weight function still creates a distribution with the variance greater than the mean to overcome overdispersion data. The new distribution obtained by giving that weight function is called the weighted negative binomial Poisson-Lindley (WNBPL) distribution. This thesis discusses the formation of the weighted negative binomial Poisson-Lindley distribution, some of its characteristics, and estimate its parameters using the maximum likelihood method. As an illustration, WNBPL distribution is used to model the data of frequency claims by policyholders.
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Avidati
Abstrak :
Data panel merupakan gabungan dari dua jenis data, yaitu data cross section dan data longitudinal. Model regresi linier yang melibatkan data panel disebut dengan model regresi data panel. Pada saat melakukan observasi, sering ditemui bahwa nilai observasi di suatu lokasi bergantung pada nilai observasi di lokasi sekitarnya, yang dikenal dengan spasial dependen. Model regresi data panel yang turut melibatkan aspek ketergantungan lokasi (spasial dependen) dikenal dengan model spasial data panel. Model spasial lag data panel menunjukkan adanya ketergantungan antara variabel dependen di suatu lokasi dengan variabel dependen di lokasi sekitarnya. Pada tugas akhir ini akan dibahas penaksiran parameter pada Random Effects Spatial Lag Panel Data Model dengan komponen error satu arah menggunakan metode maksimum likelihood.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gina Nuryani Putri
Abstrak :
Analisis regresi digunakan untuk mengetahui hubungan antara satu variabel respon dan satu atau lebih variabel penjelas. Ketika variabel respon berupa data count yaitu data yang berupa bilangan bulat non-negatif, analisis regresi yang sering digunakan adalah analisis regresi Poisson. Pada regresi Poisson terdapat asumsi kesamaan nilai mean dengan nilai variansinya. Dalam data count sering didapati kondisi dimana nilai variansi lebih besar dari nilai meannya atau disebut overdispersi. Pada data yang overdispersi, regresi Poisson kurang tepat jika digunakan karena nilai standard error dari taksiran parameter yang dihasilkan akanunderestimate sehingga beresiko memberikan kesimpulan yang tidak tepat. Model regresi Poisson-Inverse Gaussian dapat digunakan pada data count yang overdispersi dan memiliki tail panjang. Penaksiran parameter model regresi Poisson-Inverse Gaussian menggunakan metode maksimum likelihood dan solusi dari fungsi log -likelihood-nya menggunakan pendekatan numerik yaitu Newton-Raphson. Uji kesesuaian model yang digunakan mencakup statistik pseudo R-Squared, uji rasio likelihood, dan Uji Wald. ......Regression analysis is used to investigate the relationship between one response variable and one or more regressor variables. If the response variable is count data, that has non negative integer value, the regression analysis that usually used is Poisson Regression. Poisson regression has an assumption that mean of response variable equal to its variance. On count data frequently found that the variance is greater than mean, or called overdispersion. On overdispersion case, poisson regression is inconvenient to used because it may underestimate the standard error of regression parameters and consequently it risk to give misleading inference. Poisson Inverse Gaussian regression model can be used on overdispersion and long tail count data. Parameter estimation of Poisson Inverse Gaussian Regression Model can be obtained through the maximum likelihood method and the solution of log likelihood function may be solved by using numerical method called Newton Raphson. Goodness of fit testing of this model includes pseudo R Squared, rasio likelihood test, and Wald test.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68659
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratu Mutiara Pakungwati
Abstrak :
Tugas akhir ini berisi pembahasan mengenai distribusi Invers Weibull Marshall-Olkin IWMO yang merupakan distribusi probabilitas untuk peubah acak kontinu. Distribusi IWMO dibentuk dari distribusi Invers Weibull IW dengan metode Marshall-Olkin, metode ini adalah metode penambahan parameter yang diperkenalkan oleh Albert W Marshall dan Ingram Olkin pada tahun 1997. Distribusi IW sendiri diperoleh dari distribusi Weibull dengan melakukan tranformasi terhadap peubah acak. Distribusi IWMO mampu menggambarkan bentuk data seperti distribusi asalnya dalam hal ini distribusi IW dan bentuk data dari distribusi invers Eksponensial selain itu distribusi IWMO dapat menjelaskan data outlier lebih baik dibandingkan distribusi IW disebabkan oleh penambahan parameter Marshall-Olkin. Selanjutnya akan dibahas mengenai fungsi kepadatan probabilitas, fungsi distribusi, Moment Generating Function MGF, momen ke-r, mean, variansi, koefisien skewness, koefisien kutrosis, kuantil dan median dari IWMO. Penaksiran parameter menggunakan metode maksimum likelihood. Distribusi Weibull, IW dan IWMO akan diterapkan pada data yang memiliki outlier. Perbandingan model menggunakan log likelihood, AIC, BIC menunjukan distribusi IWMO sesuai dengan data lebih baik dibandingkan Weibull dan IW. ......This final project contains a discussion of the distribution of Inverse Weibull Marshall Olkin IWMO which is the probability distribution for continuous random variables. The IWMO distribution is formed from the Inverse Weibull IW distribution by Marshall Olkin method, this method is the parameter addition method introduced by Albert W Marshall and Ingram Olkin in 1997. IWull distribution itself is obtained from the Weibull distribution by transforming the random variables. IWMO distribution able to describe data form like its original distribution that is IW distribution and data form from Exponential inverse distribution beside that IWMO distribution can explain data outlier better than IW distribution caused by addition of Marshall Olkin parameter. The next will be discussed about probability density function, distribution function, Moment Generating Function MGF, rth moment, mean, variance, skewness coefficient, coefficient kutrosis, quantitative and median from IWMO. Parameter estimation using likelihood maximum method. Weibull, IW and IWMO distributions will be applied to data that has an outlier. Comparison of models using log likelihood, AIC, BIC shows IWMO distribution in accordance with better data than Weibull and IW.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Auzano Adli Dzil Ikram
Abstrak :
ABSTRAK
Distribusi Beta-Burr Tipe X merupakan distribusi kontinu yang mampu memodelkan beberapa jenis distribusi dari data, seperti right skewed, left skewed, atau symmetrical. Distribusi Beta-Burr Tipe X merupakan hasil penggabungan dari fungsi distribusi beta dengan fungsi distribusi Tipe X Burr. Pembentukan distribusi Beta-Burr Tipe X, serta karakteristik distribusi Beta-Burr Tipe X yang meliputi fungsi densitas probabilitas, fungsi distribusi, momen ke - , momen pusat ke-, mean, varians, dan fungsi pembangkit momen dibahas dalam tesis ini. Estimasi parameter distribusi Beta-Burr Tipe X menggunakan metode kemungkinan maksimum dan hasilnya dapat diperoleh dengan metode numerik. Sebagai ilustrasi, data hormon luteinizing digunakan dalam sampel darah wanita yang dimodelkan dengan distribusi Beta-Burr Tipe X.
ABSTRACT
Beta-Burr Distribution Type X is a continuous distribution that is able to model several types of distributions from the data, such as right skewed, left skewed, or symmetrical. The Type X Beta-Burr distribution is the result of combining the beta distribution function with the Type X Burr distribution function. The formation of the Type X Beta-Burr distribution, as well as the characteristics of the Type X Beta-Burr distribution which include the probability density function, distribution function, th moment, th center moment, mean, variance, and moment generating function are discussed in this thesis. The parameter estimation of Beta-Burr Type X distribution uses the maximum likelihood method and the results can be obtained by numerical methods. To illustrate, luteinizing hormone data were used in a female blood sample modeled with a Type X Beta-Burr distribution.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marko Chindranata
Abstrak :
Data waktu tunggu merupakan data waktu hingga suatu kejadian (event) terjadi. Salah satu distribusi yang sering digunakan dalam memodelkan waktu tunggu adalah distribusi Weibull. Namun dalam pengaplikasiannya, distribusi Weibull memiliki sebuah kekurangan, yaitu bentuk fungsi hazard yang terbatas pada bentuk monoton. Oleh karena itu, diperlukan suatu metode untuk menggeneralisasi distribusi Weibull sehingga dapat memperluas variasi data yang dapat dimodelkannya. Salah satu perluasan tersebut adalah distribusi Weibull-Frechet (WFr). Distribusi Weibull-Frechet memiliki kelebihan dibanding distribusi Weibull, yaitu kemampuannya memodelkan data dengan fungsi hazard berbentuk unimodal. Metode yang digunakan dalam membentuk distribusi Weibull-Frechet adalah Weibull-G (WG). Metode Weibull-G menggunakan suatu fungsi W[G(x)] untuk menggabungkan distribusi Weibull dengan suatu distribusi sembarang yang memiliki fungsi distribusi kumulatif G(x). Oleh karena itu, penelitian ini membahas proses pembentukan distribusi Weibull-Frechet. Selain itu, dibahas juga karakteristik dari distribusi Weibull-Frechet beserta penaksiran parameter distribusi Weibull-Frechet dengan menggunakan metode penaksiran maksimum likelihood. Pada bagian akhir diberikan sebuah ilustrasi data menggunakan data waktu tunggu hingga pasien kanker lambung meninggal. Data tersebut dimodelkan menggunakan distribusi Weibull-Frechet, dengan distribusi Weibull dan distribusi Frechet sebagai pembanding. Hasil pemodelan menunjukkan bahwa distribusi Weibull-Frechet merupakan distribusi terbaik dalam memodelkan data waktu tunggu hingga pasien kanker lambung meninggal. ......Lifetime data is a type of data that consists of waiting time until an event occurs. The distribution usually used for modeling lifetime data is the Weibull distribution. However, Weibull distribution has a limitation in its application : it can only model data with a monotonic hazard function. Therefore, a method for generalizing The Weibull distribution is needed so it can model a greater variety of data. One of those generalizations is the Weibull-Frechet distribution (WFr). The Weibull-Frechet distribution has an advantage over the Weibull distribution, due to its capability in modeling data with unimodal hazard function. The method used in generating the Weibull-Frechet distribution is the Weibull-G (WG). The Weibull-G method combines the distribution of a Weibull distribution with an arbitrary distribution with a cumulative distribution function G(x) using a function W[G(x)]. Hence, this thesis studies how to generate a Weibull-Frechet distribution. Furthermore, it also studies the characteristics of the Weibull-Frechet distribution and how to estimate the distribution’s parameters using the maximum likelihood estimation method. At the end of this thesis, lifetime data of gastric cancer patients is given for illustration purposes. The data is modeled using the Weibull-Frechet distribution, and both the Weibull and Frechet distribution for comparison. The model result shows that the Weibull-Frechet distribution is the best distribution for modeling the lifetime data of gastric cancer patients.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rida Martiza
Abstrak :
Regresi Poisson merupakan generalized linear models (GLM) yang umum digunakan untuk memodelkan hubungan antara variabel respon berbentuk count data dengan satu atau lebih kovariat. Hanya saja, kerap dijumpai count data yang tidak memenuhi asumsi equidispersion sehingga tidak dapat dimodelkan dengan regresi Poisson. Salah satu penyebabnya adalah fenomena overdispersion yang teridentifikasi dengan banyaknya observasi yang bernilai nol (excess zeros) pada count data. Model regresi Zero-Inflated Poisson (ZIP) dapat digunakan untuk memodelkan count data yang mengalami overdispersion akibat excess zeros. Namun, pada beberapa kasus, count data dapat mengandung excess zeros dan excess ones dalam suatu periode waktu tertentu. Oleh karena itu, diperkenalkan solusi atas permasalahan tersebut menggunakan sebuah distribusi baru, yaitu distribusi Zero-and-One-Inflated Poisson (ZOIP), yang dibangun berdasarkan distribusi Bernoulli dan Poisson. Pada skripsi ini, dikonstruksi model regresi ZOIP untuk memodelkan count data yang mengandung excess zeros dan excess ones dalam suatu periode waktu tertentu. Parameter model regresi ZOIP tersebut diestimasi menggunakan metode maksimum likelihood dan algoritma Expectation Maximization (EM). Selanjutnya, diaplikasikan model regresi ZOIP dengan satu kovariat dan tanpa kovariat ke data klaim asuransi mobil. Berdasarkan nilai Akaike Information Criteria (AIC), didapatkan bahwa model regresi tanpa kovariat lebih cocok untuk memodelkan data klaim asuransi mobil yang dipakai. ......Poisson regression is a generalized linear model (GLM) that is commonly used to model the relationship between response variables in the form of count data with one or more covariates. However, it is often found that count data does not meet the equidispersion assumption, so it cannot be modeled using Poisson regression. One of the causes is the phenomenon of overdispersion which is identified by the number of observations that are zero (excess zeros) in the count data. The Zero-Inflated Poisson (ZIP) regression model can be used to model count data that experiences overdispersion due to excess zeros. However, in some cases, count data may contain excess zeros and excess ones in a certain period of time. Therefore, a solution to this problem was introduced using a new distribution, namely the Zero-and-One-Inflated Poisson (ZOIP) distribution, which was built based on the Bernoulli and Poisson distribution. In this thesis, a ZOIP regression model is constructed to model count data containing excess zeros and excess ones in a certain period of time. The parameters of the ZOIP regression model are estimated using the maximum likelihood method and the Expectation Maximization (EM) algorithm. Furthermore, the ZOIP regression model with a covariate and without covariates were applied to the car insurance claim data. Based on the Akaike Information Criteria (AIC) value, it was found that the regression model without covariates is more suitable for modeling the car insurance claim data used.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>