Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Hanna Tiara Andarlia
Abstrak :
Model pertumbuhan populasi dalam persamaan diferensial parsial (PDP) menggambarkan evolusi jumlah populasi dalam spasial dan waktu. Dalam penerapannya, telah diaplikasikan model PDP dalam ilmu matematika biologi yang disebut Model Diffusive Malthus dan Model Fisher-Kolmogorov.  Pada skripsi ini, model tersebut dikaji kembali dan dimodifikasi menjadi Model Modifikasi Fisher-Kolmogorov, di mana termasuk ke dalam persamaan reaksi-difusi yang dibentuk dari persamaan difusi dan persamaan logistik dengan melibatkan efek perburuan sebagai suku reaksinya. Kedua suku tersebut dan masing-masing parameter di dalamnya memiliki peranan penting karena digunakan untuk mempelajari perilaku solusi, baik secara analitik maupun numerik. Analisis numerik serta simulasinya untuk solusi model ini dikerjakan menggunakan metode beda hingga eksplisit berdasarkan kondisi nilai awal. ......Population growth model on partial differential equation (PDE) describes the evolution of the number of population in spatial and time. In this application, there has been applied the PDE model in mathematical biology that is called Diffusive Malthus Model and Fisher-Kolmogorov Model. In this thesis, those model are reviewed and modified becoming Fisher-Kolmogorov Modified Model, where is classified as reaction-diffusion equation which is formed from diffusion equation and logistic equation with involving harvest effect as a reaction term. Both of those terms and each of the parameters on it have important roles that study the solution trajectories, both analytical and numerical. Numerical analysis and its simulation for this model solution are worked using explicit finite difference based on initial conditions.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitri Eka Pranastuti
Abstrak :
Pada skripsi ini, dibahas model SIS dengan intervensi perawatan medis berupa pengobatan ke rumah sakit untuk individu terinfeksi. Model ini digunakan untuk menggambarkan dinamika penyebaran penyakit tertentu secara spasial. Model epidemi SIS akan direkonstruksi dengan melibatkan dua faktor, yaitu faktor intervensi perawatan medis, dan faktor spasial. Sejumlah individu terinfeksi diberikan intervensi perawatan medis untuk mempercepat waktu pemulihan. Hasil dari simulasi menunjukkan bahwa mobilitas manusia dapat mempengaruhi penyebaran penyakit secara spasial. Faktor spasial terlibat dalam model dengan pendekatan persamaan diferensial parsial. Dalam skripsi ini, dibahas hasil dan interpretasi dari titik keseimbangan, analisis kestabilan, dan Basic Reproduction Number (R0), dan metode beda hingga digunakan untuk mendekati solusi numerik model dalam beberapa skenario intervensi di lapangan.
In this thesis discussed the SIS model with medical treatment intervetion in the form of hospital treatment for infected individuals. This model is used to describe the dynamic of the spatial spread of certain diseases. The SIS epidemic model will be reconstructed by involving two factors, namely Medical Treatment Intervetion factors, and spatial factors. Some infected individuals are given medical treatment intervention to accelerate the recovery time. Simulation results show that human mobility can affect the spread ofdisease spatially. Spatial factors are involved in to the models with PDE approached. In this thesis, the results and interpretation of equillibrium, system stability analysis, and R0 are discussed, and finite difference methods used to approaches numerical solutions of models in several intervention scenarios in the field.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library