Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Yuliana Portti
Abstrak :
Penelitian ini mengusulkan tiga algoritma meta-heuristik berbasis Fuzzy K-modes untuk clustering binary data set. Ada tiga metode metaheuristik diterapkan, yaitu Particle Swarm Optimization (PSO), Genetika Algoritma (GA), dan Artificial Bee Colony (ABC). Ketiga algoritma digabungkan dengan algoritma K-modes. Tujuannya adalah untuk memberikan modes awal yang lebih baik untuk K-modes. Jarak antara data ke modes dihitung dengan menggunakan koefisien Jaccard. Koefisien Jaccard diterapkan karena dataset mengandung banyak nilai nol . Dalam rangka untuk melakukan pengelompokan set data real tentang supplier otomotif di Taiwan, algoritma yang diusulkan diverifikasi menggunakan benchmark set data. Hasil penelitian menunjukkan bahwa PSO K-modes dan GA K-modes lebih baik dari ABC K-modes. Selain itu, dari hasil studi kasus, GA K-modes memberikan SSE terkecil dan juga memiliki waktu komputasi lebih cepat dari PSO K-modes dan ABC K-modes. ...... This study proposed three meta-heuristic based fuzzy K-modes algorithms for clustering binary dataset. There are three meta-heuristic methods applied, namely Particle Swarm Optimization (PSO) algorithm, Genetic Algorithm (GA) algorithm, and Artificial Bee Colony (ABC) algorithm. These three algorithms are combined with k-modes algorithm. Their aim is to give better initial modes for the k-modes. Herein, the similarity between two instances is calculated using jaccard coefficient. The Jaccard coefficient is applied since the dataset contains many zero values. In order to cluster a real data set about automobile suppliers in Taiwan, the proposed algorithms are verified using benchmark data set. The experiments results show that PSO K-modes and GA K-modes is better than ABC K-modes. Moreover, from case study results, GA fuzzy K-modes gives the smallest SSE and also has faster computational time than PSO fuzzy K-modes and ABC fuzzy K-modes.
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44406
UI - Tesis Membership  Universitas Indonesia Library
cover
Komeil Yousefi
Abstrak :
ABSTRACT
The fixed charge transportation problem (FCTP) is one of important and classical transportation problems with many real world applications in the area of logistics and supply chain management. Due to nature complexity of this problem, the literature has seen a large number of heuristics and meta heuristics to solve the FCTP. This paper proposes a new heuristic along with well known meta heuristics to solve the FCTP with discount supposition on both fixed and variable charges. In addition, two models with all units discount and incremental discount are firstly introduced in this study to apply the discount mechanism. As such, since the previous researchers mainly used spanning tree based and priority based representations, this study utilizes both of these methods and compared the results. Finally, a comprehensive discussion based on the computational results of heuristic and meta heuristics with different encoding approaches has been investigated through different problem sizes.
Philadelphia: Taylor and Francis, 2018
658 JIPE 35:7 (2018)
Artikel Jurnal  Universitas Indonesia Library
cover
Kaveh, Ali
Abstrak :
The book presents eight well-known and often used algorithms besides nine newly developed algorithms by the first author and his students in a practical implementation framework. Matlab codes and some benchmark structural optimization problems are provided. The aim is to provide an efficient context for experienced researchers or readers not familiar with theory, applications and computational developments of the considered metaheuristics. The information will also be of interest to readers interested in application of metaheuristics for hard optimization, comparing conceptually different metaheuristics and designing new metaheuristics.
Switzerland: Springer Nature, 2019
e20509237
eBooks  Universitas Indonesia Library