Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 18 dokumen yang sesuai dengan query
cover
Dini Rahayu
Abstrak :
Masalah yang sering terjadi dalam penelitian adalah adanya missing value padahal data yang lengkap diperlukan untuk mendapatkan hasil analisis yang menggambarkan populasi. Dalam pengolahan data, missing value sering terjadi pada analisis regresi. Analisis regresi merupakan suatu model prediksi dengan melihat hubungan antara variabel respon dan variabel prediktor. Missing value dalam analisis regresi dapat ditemukan baik pada variabel respon maupun variabel prediktor. Penelitian ini membahas imputasi missing value yang terjadi pada kedua variabel tesebut dengan menggunakan imputasi regresi. Algoritma Expectation Maximization (EM) merupakan metode penaksiran parameter regresi dengan menggunakan metode Maximum Likelihood Estimaton (MLE) pada data yang memiliki missing value. Untuk menyeimbangkan hasil taksiran parameter model regresi untuk setiap variabel, dilakukan proses penyeimbangan (balance process) untuk mendapatkan hasil taksiran parameter yang konvergen. Simulasi taksiran nilai variabel respon dan prediktor yang hilang dilakukan pada berbagai variasi persentase missingness. Metode penaksiran parameter regresi dengan menggunakan algoritma EM, dapat menghasilkan model yang menjelaskan data sebesar 87% hingga terjadi missing sebanyak 60%.
The problem that often occurs in research is the existence of missing values even though complete data is needed to obtain the results of analysis that describe the population. In processing data, missing values often occur in regression analysis. Regression analysis is a prediction model by looking at the relationship between response variables and predictor variables. Missing values in regression analysis can be found in both the response variable and predictor variable. This study discusses the imputation of missing values that occur in both variables using regression imputation. The Expectation Maximization (EM) algorithm is a method of estimating regression parameters using the Maximum Likelihood Estimaton (MLE) method on data that has missing value. To balance the estimated parameters of the regression model for each variable, a balance process is performed to obtain the results of the convergent parameter estimates. The estimated simulation of the value of the response variable and missing predictor was carried out in various variations in the percentage of missingness. The method of estimating regression parameters using the EM algorithm, can produce a model that explains the data by 87% until there is missing as much as 60%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syafi`i
Abstrak :
Penelitian ini bertujuan untuk mengetahui faktor-faktor yang mempengaruhi realisasi kredit, baik dari sisi penawaran maupun permintaan. Data yang digunakan dalam kajian empiris ini merupakan data runtun waktu triwulanan periode 1993:3 sampai dengan 2004:2 atau 44 observasi. Alat analisis yang digunakan adalah maximum likelihood estimation dengan switching regression. Hasil estirnasi memberikan informasi bahwa seluruh variabel independen yang digunakan memiliki koefisien yang sesuai dengan hipotesis penelitian dan seluruh variabel independen berpengaruh signifikan terhadap penawaran dan permintaan kredit. Berdasarkan pengujian diketahui bahwa lambatnya pertumbuhan kredit perbankan setelah mengalami penurunan yang cukup tajam pada saat krisis moneter merupakan salah satu faktor yang menyebabkan proses pertumbuhan ekonomi belum dapat kembali pada tingkat sebelum krisis. Sebelum krisis moneter, terdapat kecenderungan terjadinya ekses permintaan kredit (excess demand equilibria), yaitu realisasi kredit dipengaruhi oleh sisi penawaran. Ekses permintaan kredit ini tarjadi karena kondisi makro ekonomi cukup kondusif sehingga mendorong dunia usaha untuk mengajukan permintaan kredit, yang tidak diimbangi dengan penawaran kredit dalam jumlah yang sebanding. Sementara itu, mulai akhir 1999 s.d tahun 2004 terdapat kecenderungan terjadinya ekses penawaran kredit (excess supply equilibria), yang artinya realisasi kredit dipengaruhi oleh sisi permintaan. Ekses penawaran kredit ini antara lain dikarenakan tingginya suku bunga kredit yang diperhitungkan oleh perbankan dan kondisi nilai tukar yang belum stabil. Selain itu juga diketahui bahwa permintaan kredit lebih sensitif terhadap suku bunga dibandingkan dengan penawaran kredit.
Depok: Universitas Indonesia, 2005
T20253
UI - Tesis Membership  Universitas Indonesia Library
cover
Alfifah Meytrianti
Abstrak :
Distribusi Poisson adalah distribusi yang biasa digunakan untuk memodelkan count data dengan asumsi nilai mean dan variansi memiliki nilai yang sama (ekuidispersi). Dalam kenyataannya, sebagian besar count data memiliki nilai mean yang lebih kecil dari variansi (overdispersi) dan distribusi Poisson tidak cocok digunakan untuk memodelkannya. Dengan demikian, beberapa distribusi alternatif telah diperkenalkan untuk mengatasi masalah ini. Salah satunya adalah distribusi Shanker yang hanya memiliki satu parameter. Namun, distribusi Shanker adalah distribusi kontinu, sehingga tidak dapat digunakan untuk memodelkan count data. Oleh karena itu, distribusi baru ditawarkan yaitu distribusi Poisson-Shanker. Distribusi Poisson-Shanker diperoleh dengan mencampurkan distribusi Poisson dan Shanker, dengan distribusi Shanker sebagai mixing distribution. Hasil yang diperoleh adalah distribusi campuran yang memiliki satu parameter dan dapat digunakan untuk memodelkan count data yang overdispersi. Dalam tugas akhir ini, diperoleh bahwa distribusi Poisson-Shanker memiliki beberapa sifat yaitu unimodal, overdispersi, hazard rate naik, serta diperoleh koefisien kurtosis dan skewness. Selain itu, diperoleh pula empat raw momen dan momen sentral pertama. Metode yang digunakan untuk menaksir parameter adalah metode maximum likelihood dan diselesaikan dengan menggunakan iterasi numerik. Dilakukan ilustrasi pada data untuk menggambarkan distribusi Poisson-Shanker. Karakteristik parameter dari distribusi Poisson-Shanker diperoleh dengan simulasi numerik dengan beberapa variasi nilai parameter dan ukuran sampel. Hasil yang diperoleh adalah rata-rata nilai MSE dan bias taksiran parameter akan naik seiring pertambahan nilai parameter untuk suatu nilai n dan akan turun seiring pertambahan nilai n untuk suatu nilai parameter.
Poisson distribution is a common distribution for modelling count data with assumption mean and variance has the same value (equidispersion). In fact, most of the count data have mean that is smaller than variance (overdispersion) and Poisson distribution cannot be used for modelling this kind of data. Thus, several alternative distributions have been introduced to solve this problem. One of them is Shanker distribution that only has one parameter. Since Shanker distribution is continuous distribution, it cannot be used for modelling count data. Therefore, a new distribution is offered that is Poisson-Shanker distribution. Poisson-Shanker distribution is obtained by mixing Poisson and Shanker distribution, with Shanker distribution as the mixing distribution. The result is a mixture distribution that has one parameter and can be used for modelling overdispersion count data. In this paper, we obtain that Poisson-Shanker distribution has several properties are unimodal, overdispersion, increasing hazard rate, and right skew. The first four raw moments and central moments have been obtained. Maximum likelihood is a method that is used to estimate the parameter, and the solution can be done using numerical iterations. A real data set is used to illustrate the proposed distribution. The characteristics of the Poisson-Shanker distribution parameter is also obtained by numerical simulation with several variations in parameter values and sample size. The result is average MSE and bias of the estimated parameter will increase when the parameter value rises for a value of n and will decrease when the value of n rises for a parameter value.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitria Rahmawati
Abstrak :
Data lifetime biasanya digunakan peneliti untuk mengetahui tingkat survival atau tingkat kegagalan suatu objek. Distribusi Weibull merupakan distribusi probabilitas yang sering digunakan untuk memodelkan data lifetime. Namun, distribusi Weibull hanya dapat memodelkan data lifetime dengan tingkat kegagalan atau hazard rate yang monoton. Sehingga dibutuhkan distribusi baru yang dapat memodelkan data lifetime dengan karakteristik tingkat kegagalan atau hazard rate yang beragam. Distribusi inverse Weibull adalah distribusi hasil transformasi inverse dari distribusi Weibull. Distribusi inverse Weibull merupakan distribusi yang dapat memodelkan data lifetime dengan hazard rate monoton (turun) maupun  non-monoton (upside-down bathtub shaped). Namun, untuk membuat kepadatan fleksibel dengan berbagai macam bentuk diperlukan generalisasi dari distribusi ini dengan menambahkan suatu parameter shape. Distribusi generalized inverse Weibull merupakan generalisasi dari distribusi inverse Weibull yaitu yang dibentuk dengan memangkatkan fungsi distribusi inverse Weibull dengan suatu parameter baru. Distribusi generalized inverse Weibull memiliki 2 parameter shape dan 1 parameter scale sehingga distribusi ini dapat menggambarkan shape dari fungsi hazard yang lebih beragam. Pada  skripsi ini, akan dibahas mengenai pembentukan distribusi inverse Weibull dan pembentukan distribusi generalized inverse Weibull, serta fungsi kepadatan probabilitas, fungsi distribusi, fungsi survival, fungsi hazard, dan karakteristik-karakteristik dari kedua distribusi tersebut. Penaksiran parameter dari distribusi generalized inverse Weibull menggunakan metode maksimum likelihood.
Lifetime data is usually used by researchers to determine the level of survival or failure rate of an object. Weibull distribution is a probability distribution that is often used to model the lifetime data. However, the Weibull distribution is only used to model the lifetime data with monotone failure rate or monotone hazard rate. So that, a new distribution is needed to model the lifetime data with varying characteristics of failure rates or hazard rates. Inverse Weibull distribution is a distribution that is formed from the inverse transformation of the Weibull distribution. Inverse Weibull distribution is a continued distribution which can model lifetime data with a monotone hazard rate (constant, increase, and decrease) or non-monotone hazard rate (upside-down bathtub shaped). However, to make a density flexible with wide variety of shapes the generalizations from this distribution are needed by adding a shape parameter. Generalized inverse Weibull distribution is derived from generalization of inverse Weibull distribution that is formed by raising the inverse Weibull distribution function with a new parameter. Generalized inverse Weibull distribution has two shape parameters and one scale parameter. So, this distribution can describe a more diverse shapes of hazard function. In this skripsi, we will discuss how to construct inverse Weibull distribution and Generalized inverse Weibull distribution, and probability distribution function, cumulative distribution function, survival function, hazard function, and characteristics of these distributions. Parameter estimation of the generalized inverse Weibull distribution is using the maximum likelihood method.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nico
Abstrak :
Coronavirus Disease 2019 (COVID-19) adalah penyakit menular yang disebabkan oleh virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Virus ini pertama kali ditemukan di Wuhan China pada desember 2019 dan pertama kali masuk ke Indonesia pada 2 Maret 2020. Selama masa pandemi COVID-19 banyak terjadi lonjakan secara tiba-tiba pada jumlah kasus baru COVID-19 yang menunjukkan bahwa adanya kesulitan dalam mengantisipasi peningkatan penyebaran COVID-19. Skripsi ini membahas pemodelan jumlah kasus baru harian COVID-19 di Indonesia menggunakan Gaussian Mixture Model (GMM) dimana model ini merupakan salah satu Mixture Model. Mixture Model merupakan penjumlahan linear berbobot dari beberapa fungsi distribusi dimana masing-masing fungsi distribusi disebut sebagai komponen campuran. Pada GMM, setiap komponen campuran diasumsikan berdistribusikan Gaussian (Normal). Pada penelitian ini, dikonstruksi beberapa GMM dengan 2, 3 dan 4 jumlah komponen untuk pemodelan data jumlah kasus baru harian COVID-19 di Indonesia dari 1 Januari 2021 sampai 31 Maret 2022 dengan interval waktu 455 hari. Parameter dari setiap GMM tersebut diestimasi menggunakan metode maximum likelihood estimation (MLE) melalui algoritma Expectation-Maximization (EM). Berdasarkan nilai Akaike Information Criteria (AIC), diperoleh GMM dengan 4 komponen merupakan model terbaik untuk pemodelan data jumlah kasus baru harian COVID-19 di Indonesia. Dengan GMM 4 komponen, diperoleh probabilitas jumlah kasus baru harian COVID-19 di Indonesia kurang dari jumlah kasus harian terendah adalah 0,009598, lebih dari jumlah kasus harian rata-rata adalah 0,299443 dan lebih dari jumlah kasus harian tertinggi adalah 0,017669. ......Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This virus was first found in Wuhan, China in December 2019 and first got into Indonesia on March 2, 2020. During the pandemic, there are a lot of sudden spikes in new COVID-19 daily cases which indicates that there is a struggle in anticipating the sudden increase in COVID-19 transmission. This research discuss about the modeling of new COVID-19 daily cases in Indonesia using Gaussian Mixture Model (GMM) which is a part of Mixture Model. Mixture Model is a linear weighted sum of some distribution function where each function is called a mixture component. In GMM, every mixture components are assumed to be normally distributed. In this research, three GMMs with 2,3 and 4 components were constructed to model new COVID-19 daily cases in Indonesia from January 1, 2021 to March 31, 2022 with a total of 455 days of observation. The parameters of each GMM were estimated with maximum likelihood estimation (MLE) method through Expectation-Maximization (EM) algorithm. According to Akaike Information Criteria (AIC) value, it was found that GMM with 4 components was the best model for modeling new COVID-19 cases in Indonesia. With this model, the probability of new COVID-19 daily cases in Indonesia are less than the lowest daily cases is 0,009598, more than the average daily cases is 0,299443 and more than the highest daily cases is 0,017669.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Sandy Athalla Syach
Abstrak :
Dalam kurun waktu beberapa tahun terakhir ini dunia sedang menghadapi bahaya dari pandemi serta peperangan atau konflik antar negara. Kasus seperti pandemi dan konflik atau perang antar negara merupakan kejadian atau kondisi ekstrim yang dapat terjadi kapan saja dan menimbulkan banyak korban jiwa. Oleh karena itu, diperlukan pemodelan yang dapat mengakomodir mortalitas akibat kejadian ekstrim tersebut. Model Lee-Carter merupakan sebuah model yang menggunakan data tingkat mortalitas dari kelompok usia yang diamati dari waktu ke waktu. Untuk mengakomodir tingkat mortalitas ekstrim, model Lee-Carter dimodifikasi menggunakan Extreme Value Theory (EVT) yang disebut dengan Model EVT modified Lee-Carter. Pendekatan EVT yang digunakan adalah pendekatan Peak Over Threshold (POT) dengan Generalized Pareto Distribution (GPD). Model ini diimplementasikan pada data tingkat mortalitas Indonesia tahun 1998 untuk peramalan tingkat mortalitas periode pandemi Covid-19 tahun 2021 dan 2022. Dalam pemodelan GPD, didapatkan nilai threshold sebesar 0,02. Untuk nilai yang berada di atas threshold, dimodelkan dengan GPD dan nilai yang berada dibawah threshold dimodelkan dengan distribusi normal dan empiris. Hasil yang didapatkan dari nilai Mean Absolute Error (MAE) dan Mean Absolute Percentage Error (MAPE) adalah model Extreme Value Theory Modified Lee-Carter distribusi empiris memberikan nilai MAPE terkecil sebesar 12,156%. Sementara itu, model Extreme Value Theory Modified Lee-Carter distribusi normal memiliki nilai MAPE sebesar 13,175% dan model Lee-Carter biasa sebesar 13,343% dalam peramalan tingkat mortalitas Indonesia pada kelompok usia yang mengalami kejadian ekstrim. ...... In the last few years the world has been facing danger from pandemics and wars or conflicts between countries. Cases such as pandemics and conflicts or wars between countries are extreme events or conditions that can occur at any time and cause many casualties. Therefore, modeling is needed that can accommodate mortality due to extreme events. The Lee-Carter model is a model that uses mortality rate data from age groups observed over time. To accommodate extreme mortality rates, the Lee-Carter model was modified using Extreme Value Theory (EVT) which is called the modified Lee-Carter EVT Model. The EVT approach used is the Peak Over Threshold (POT) approach with Generalized Pareto Distribution (GPD). This model was implemented on Indonesian mortality rate data in 1998 to forecast mortality rates for the Covid -19 pandemic period in 20 21 and 2022. In GPD modeling, a threshold value of 0.02 is obtained . For values that are above the threshold, they are modeled with GPD and values that are below the threshold are modeled with a normal and empirical distribution. The results obtained from the Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) values are that the Extreme Value Theory Modified Lee-Carter empirical distribution model gives the smallest MAPE value of 12.156%. Meanwhile, the Extreme Value Theory Modified Lee-Carter normal distribution model has a MAPE value of 13.175% and the regular Lee-Carter model is 13.343% in predicting Indonesia's mortality rate in age groups that experience extreme events.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yemima Kathleen Monica
Abstrak :
Diare merupakan salah satu infeksi saluran pencernaan berupa keluarnya tinja encer atau cair tiga kali atau lebih setiap hari. Penyakit ini umum terjadi di Indonesia dan potensial menjadi Kejadian Luar Biasa (KLB) yang sering menyebabkan kematian. Tujuan penelitian ini adalah memodelkan dan mengidentifikasi variabel yang dapat menjelaskan jumlah kejadian penyakit diare di Provinsi Jawa Barat. Jumlah kejadian diare sebagai variabel respons merupakan data berbentuk diskrit yang umumnya dimodelkan menggunakan regresi Poisson. Namun, adanya asumsi equidispersi yang harus dipenuhi dalam regresi Poisson membuat regresi Binomial Negatif digunakan apabila terjadi overdispersi. Aspek spasial juga diperhatikan sehingga model yang digunakan dalam penelitian ini adalah Geographically Weighted Negative Binomial Regression (GWNBR). Penaksiran parameter dilakukan menggunakan metode Maximum Likelihood Estimation dengan iterasi Newton-Raphson. Model GWNBR memberikan bobot tertentu pada setiap lokasi pengamatan sehingga menghasilkan taksiran parameter model yang berbeda untuk setiap lokasi pengamatan. Fungsi pembobot kernel yang digunakan adalah Fixed Bisquare dan bandwidth optimum ditentukan menggunakan cross validation (CV). Prediktor yang digunakan dalam penelitian ini adalah persentase rumah tangga yang memiliki akses terhadap sanitasi layak, persentase penduduk miskin, jumlah puskesmas, kepadatan penduduk, jumlah dokter umum, dan indeks pendidikan. Hasil dari analisis menunjukkan bahwa dalam model GWNBR diperoleh 5 kelompok berdasarkan prediktor yang signifikan. Sebanyak 3 prediktor secara signifikan menjelaskan jumlah kejadian diare di seluruh kabupaten/kota di Provinsi Jawa Barat tahun 2022, yaitu persentase penduduk miskin, kepadatan penduduk, dan indeks pendidikan. ......Diarrhea is an intestinal infection characterized by the excretion of loose or watery stools three or more times a day. This disease is common in Indonesia and has the potential to become an outbreak (KLB) that often leads to death. The aim of this study is to model and identify variables that can explain the number of diarrhea cases in West Java Province. The number of diarrhea cases as the response variable is discrete data, which is generally modeled using Poisson regression. However, due to the equidispersion assumption required in Poisson regression, Negative Binomial regression is used if overdispersion occurs. Spatial aspects are also considered, so the model used in this study is Geographically Weighted Negative Binomial Regression (GWNBR). Parameter estimation is done using the Maximum Likelihood Estimation method with Newton-Raphson iteration. The GWNBR model assign specific weights to each observation location, resulting in different parameter estimates for each location. The kernel weighting function used is Fixed Bisquare, and the optimal bandwidth is determined using cross-validation (CV). The predictors used in this study are the percentage of households with access to adequate sanitation, the percentage of poor population, the number of health centers, population density, the number of general practitioners, and the education index. The results of the analysis show that the GWNBR model identified 5 groups based on significant predictors. Three predictors significantly explain the number of diarrhea cases in all districts/cities in West Java Province in 2022: the percentage of the poor population, population density, and education index.
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Murni
Abstrak :
Model tingkat bunga yang akan dibahas pada Tesis ini adalah model ekuilibrium satu faktor, yaitu model Rendleman - Bartter (RB) yang diasumsikan dalam ukuran risk-neutral. Tesis ini membahas mengenai stabilitas model RB, yaitu stabilitas stokastik asimtotik dan stabilitas mean-square. Stabilitas model RB ini terkait dengan parameter model RB. Namun, nilai parameter model RB tidak diketahui nilainya sehingga untuk implementasi model diperlukan penaksiran parameter model RB. Penaksiran parameter model RB membutuhkan data historis tingkat bunga. Model RB terkait dengan data historis berada pada ukuran aktual (actual measure). Sedangkan, model RB berada pada ukuran riskneutral, sehingga sebelum menentukan taksiran parameter dilakukan perubahan ukuran pada model RB menggunakan Teorema Girsanov. Metode yang digunakan dalam penaksiran parameter adalah Maximum Likelihood Estimation (MLE) dan dilanjutkan dengan metode numerik Newton ? Raphson. Dengan menggunakan data tingkat bunga bulanan suatu zero-coupon bond dengan maturity time 5 tahun periode Januari tahun 1982 hingga Februari 2011 yang diunduh dari http://www.bankofengland.co.uk dapat diperoleh nilai taksiran parameter yang memenuhi stabilitas model RB.
The Rendleman-Bartter (RB) model is a one-factor equilibrium interest rate model under risk-neutral measure. This thesis presents the stability of RB model, that is, stochastically asymptotically stable and mean-square stable, and their stability corresponds to parameter RB model. However, in the application the value of parameters RB model is unknown and needs to be estimated. Parameter estimation of RB model requires historical data of interest rates under actual measure. Therefore, Girsanov Theorem is used to change measure. Also, Maximum Likelihood Estimation (MLE) and Newton-Raphson method can be used to estimate these parameters. Parameter estimators are obtained by data of a zero-coupon bond with maturity time of five years from January 1982 to February 2011. This data can be downloaded from http://www.bankofengland.co.u.
Depok: Universitas Indonesia, 2011
T28800
UI - Tesis Open  Universitas Indonesia Library
cover
Achmad Fachrezi Az
Abstrak :

Penelitian ini membahas konstruksi distribusi Marshall-Olkin-Kumaraswamy-Eksponensial (MOKw-E), yang merupakan kombinasi distribusi Marshall-Olkin (MO) dan Kumarawasmy-Eksponensial (Kw-E). Distribusi ini dikenal sebagai model fleksibel yang dapat diaplikasikan untuk data dengan berbagai bentuk distribusi. Estimasi parameter dilakukan menggunakan Maximum Likelihood Estimation (MLE) dengan bantuan dua metode numerik, yaitu metode Nelder-Mead dan metode Gradien Konjugat Fletcher Reeves. Kedua metode ini banyak digunakan dalam penyelesaian permasalahan optimasi karena memiliki tingkat efisiensi yang tinggi dengan komputasi yang sederhana tetapi memberikan hasil yang akurat. Kedua metode ini akan dibandingkan dengan melihat nilai Mean Squared Error (MSE) yang merupakan suatu metrik untuk melihat seberapa cocok model dengan data yang digunakan. Terakhir, model yang dikembangkan diaplikasikan pada data severitas klaim asuransi pengangguran untuk menunjukkan kemampuan model dalam memodelkan data severitas klaim. Model tersebut akan dibandingkan dengan model yang dibangun dari distribusi Kw-E dengan melihat nilai Akaike Information Criteria (AIC) dan Bayessian information criteria (BIC) untuk menunjukan bahwa model yang dikembangkan lebih baik dibandingkan model asalnya.


This research discusses the construction of the Marshall-Olkin-Kumaraswamy-Exponential (MOKw-E) distribution, which is a combination of the Marshall-Olkin (MO) and Kumaraswamy-Exponential (Kw-E) distributions. This distribution is known as a flexible model applicable to data with various distribution shapes. Parameter estimation is performed using Maximum Likelihood Estimation (MLE) with the assistance of two numerical methods the Nelder-Mead method and the Conjugate Gradient Fletcher Reeves method. Both methods are widely used in solving optimization problems due to their high efficiency with simple computations yet accurate results. These methods will be compared by examining the Mean Squared Error (MSE) values, which is a metric to assess how well the model fits the data. Finally, the developed model is applied to unemployment insurance claim severity data to demonstrate the model's capability in representing severity claim data. The model will be compared with a model built from the Kw-E distribution by evaluating the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) values to show that the developed model is superior to the original model.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>