Ditemukan 4 dokumen yang sesuai dengan query
Muhammad Umar Al Faruq
"Teknologi material yang semakin maju membuat banyak terobosan baru, salah satunya adalah penggunaan magnesium paduan. Magnesium paduan banyak diaplikasikan untuk penggunaan sebagai biomaterial ataupun sebagai EV (Electronic Vehicle). Magnesium memiliki banyak keunggulan dan sifat mekanik yang menguntungkan, magnesium bersifat ringan sehingga bisa meningkatkan efisiensi dalam penggunaan bahan bakar pada EV, magnesium juga bersifat biodegradable dan bersifat non toxic bagi tubuh manusia, memiliki nilai densitas dan juga modulus elastisitas yang paling mirip dengan tulang manusia, bahkan hadir dalam jumlah banyak dalam tubuh manusia sehingga tak heran jika banyak diaplikasikan dalam biomaterial baik sebagai implant ataupun pengganti tulang. Namun sayangnya perubahan sifat mekanik dan struktur mikro akibat perlakuan panas belum dilakukan penelitian secara sistematis.
Penelitian ini dilakukan pada lembaran paduan magnesium AZ31B yang diberi perlakuan panas dengan waktu tahan selama 10, 30, 60, dan 120 menit. Didapatkan bahwa struktur mikro paduan magnesium AZ31B yang tidak diberi perlakuan panas memiliki butir yang cukup besar dan tidak homogen, hal ini membuat sifat mekaniknya kurang baik. Perlakuan panas membuat struktur mikronya menjadi lebih homogen dan besar butirnya mengecil, butir yang semakin kecil ini membuat sifat mekaniknya semakin baik, namun semakin lama waktu tahan yang diberikan membuat butir semakin besar dan menurunkan sifat mekanik yang dimiliki, dibuktikan dengan persamaan Hall-petch yang mendukung hasil ini.
Advancements in material technology have led to numerous breakthroughs, one of which is the use of magnesium alloys. Magnesium alloys are widely applied in biomaterials and electric vehicles (EV). Magnesium possesses many advantageous mechanical properties, being lightweight which enhances fuel efficiency in EVs. Additionally, magnesium is biodegradable and non-toxic to the human body, with a density and elastic modulus closely matching that of human bone. It is also abundant in the human body, making it ideal for applications in biomaterials, such as implants or bone substitutes. However, systematic research on the changes in mechanical properties and microstructure due to heat treatment has not been thoroughly conducted.This study investigates magnesium AZ31B alloy sheets subjected to heat treatment with holding times of 10, 30, 60, and 120 minutes. It was found that the microstructure of the untreated magnesium AZ31B alloy exhibited relatively large and inhomogeneous grains, resulting in suboptimal mechanical properties. Heat treatment homogenized the microstructure and reduced grain size, leading to improved mechanical properties. However, prolonged holding times caused grain growth, reducing mechanical properties, which is supported by the Hall-Petch relationship."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Raisa Hajraeni
"Magnesium dan paduannya telah menjadi salah satu fokus menarik dalam penelitian di bidang material, khususnya untuk aplikasi implan biomedis karena bersifat biodegradable. Namun, tantangan utama dari magnesium ialah ketahanan korosinya yang rendah. Modifikasi permukaan yang dapat digunakan karena efektif untuk meningkatkan ketahanan korosi pada magnesium adalah Plasma Electrolytic Oxidation (PEO). Namun, lapisan PEO menunjukkan bioaktivitas yang rendah, sehingga pertumbuhan apatit berlangsung lambat. Dalam penelitian ini, proses PEO dilakukan menggunakan elektrolit berbasis fosfat, yaitu Na3PO4-KOH dan penambahan ion Ca berupa Ca(OH)2. Untuk meningkatkan mobilitas ion khususnya ion Ca agar dapat masuk ke dalam lapisan oksida, proses PEO dimodifikasi menggunakan ultrasonikasi. Proses PEO dilakukan dalam dua kondisi, yaitu tanpa (PEO) dan dengan ultrasonikasi (UPEO), serta waktu oksidasi divariasikan 10, 15, dan 20 menit. Berdasarkan hasil analisis fasa XRD, terdapat fasa kristalin Mg dan Mg3(PO4)2 pada masing-masing lapisan, serta tambahan fasa C5(PO4)3OH atau HA pada lapisan UPEO. Penggunaan ultrasonikasi cenderung meningkatkan persentase pori pada permukaan lapisan oksida hingga 26% dibandingkan lapisan PEO. Kekerasan lapisan PEO meningkat hingga 6 kali dari substrat, sedangkan lapisan UPEO meningkat hingga 2-4 kali dari substrat. Hasil uji polarisasi menunjukkan bahwa sampel lapisan PEO memiliki ketahanan korosi yang lebih baik dibandingkan sampel lapisan UPEO, dengan nilai Icorr terendah yang didapat dari pengujian PDP dan nilai hambatan total (Rp) yang lebih besar yang didapat dari hasil uji EIS. Hasil uji bioaktivitas menunjukkan adanya penumbuhan lapisan baru akibat dari endapan putih yang menutupi pori-pori pada permukaan sampel yang didukung dengan bertambahnya kandungan Ca pada masing-masing sampel dari hasil analisis EDS. Penambahan Ca(OH)2 dalam elektrolit PEO terbukti dapat meningkatkan bioaktivitas lapisan.
Magnesium and its alloys have become an attractive focus of research in materials science, especially for biomedical implant applications, because they are biodegradable. However, the main challenge of magnesium is its low corrosion resistance. The surface modification method that can effectively increase the corrosion resistance of magnesium is Plasma Electrolytic Oxidation (PEO). However, the PEO layer showed low bioactivity, so the apatite grew slowly. In this study, the PEO process used of phosphate-based electrolyte, namely, Na3PO4-KOH and the addition of Ca ions in the form of Ca(OH)2. To increase the mobility of ions, especially to enter the Ca ion into the oxide layer, a PEO process was modified using ultrasonication. The PEO process was carried out in two conditions, namely without (PEO) and with the ultrasonication (UPEO), and time variations were carried out for 10, 15, and 20 minutes. Based on the results of XRD phase analysis, there are crystalline phases of Mg and Mg3(PO4)2 detected in each layer and additional Ca5(PO4)3OH or HA phase detected in the UPEO layer. The use of ultrasonication tends to produce the oxide layer with a higher percentage of pores until 26%. The hardness value of the PEO layer was increased up to 6 times higher than the substrate, while the UPEO layer only reached 2 – 4 times. The results of the polarization test show that the PEO coatings have better corrosion resistance than the UPEO coatings, with the lowest Icorr values obtained from the PDP test and a higher total resistance (Rp) value obtained from the EIS test results. The results of the bioactivity test showed the growth of a new layer because white particles covered the pores on the sample surface, which is supported by the increasing content of the Ca from the EDS analysis in each sample. The addition of Ca(OH)2 in the electrolyte was proven to increase the bioactivity of the PEO coatings."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Rani Kusumawardani
"Magnesium dan paduannya memiliki karakteristik biodegradable sebagai bahan implan non-permanen. Namun, tantangan utama yang dimiliki oleh magnesium adalah ketahanan korosi yang rendah. Salah satu modifikasi permukaan yang dapat meningkatkan ketahanan korosi Mg dan paduannya adalah Plasma Electrolytic Oxidation (PEO). Namun, lapisan oksida pada magnesium hasil PEO protektif sehingga pembentukan mineral tulang berlangsung lambat. Dalam penelitian ini ion Ca2+ ditambahkan dalam bentuk Ca(OH)2 dalam larutan Na3PO4 dan KOH. Untuk mempermudah masuknya Ca ke dalam lapisan PEO, ultrasonikasi diberikan selama proses PEO. Variasi waktu PEO selama 10, 15, dan 20 menit. Berdasarkan hasil analisis fasa XRD, terdapat fasa Mg, Mg3(PO4)2 pada semua fasa lapisan dan tambahan fasa Ca5(PO4)3OH pada lapisan UPEO. Penggunaan ultrasonikasi cenderung menghasilkan permukaan lapisan dengan porositas yang lebih tinggi hingga 16,65%. Hasil uji PDP menunjukkan nilai Icorr terendah dimiliki oleh sampel 20 PEO. Lapisan PEO dan UPEO menghasilkan nilai kekerasan hingga 6 kali lebih tinggi dari substrat. Penambahan Ca dalam elektrolit dan penggunaan ultrasonikasi pada PEO tidak memberikan perubahan karakteristik lapisan secara signifikan.
Magnesium and its alloys have biodegradable characteristics. The main challenge that magnesium has is its low corrosion resistance. One of the surface modifications that can increase the corrosion resistance of Mg and its alloys is Plasma Electrolytic Oxidation (PEO). However, the oxide layer on magnesium produced by PEO was protective so that the formation of bone was slow. In this study, Ca2+ ions were added in the form of Ca(OH)2 in a solution of Na3PO4 and KOH. To accelerate of Ca into the PEO layer, ultrasonication is given during the PEO. PEO time variations for 10, 15, and 20 minutes. Based on the results of the XRD phase, there are Mg, Mg3(PO4)2 in all layer phases and Ca5(PO4)3OH phases in the UPEO layer. UPEO tends to produce a layer surface with a higher porosity up to 16.65%. The PDP test results show the lowest Icorr value is owned by a sample of 20 PEO. The PEO and UPEO coating produces a hardness value of up to 6 times higher than the substrate. The addition of Ca in the electrolyte and the use of ultrasonication in PEO did not significantly change the coating characteristics."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Yuni Purnamasari
"Magnesium dan paduannya memiliki sifat biokompatibilitas yang baik dan karakteristik mirip dengan tulang, sehingga baik digunakan sebagai implan tulang di bidang ortopedi. Namun, reaktivitas yang tinggi menyebabkan magnesium dan paduannya mudah mengalami korosi. Salah satu modifikasi permukaan untuk meningkatkan ketahanan korosi pada magnesium dan paduannya adalah plasma elektrolisis atau disebut juga plasma electrolytic oxidation (PEO). Meningkatnya ketahanan korosi yang drastis pada paduan Mg menyebabkan sulitnya terbentuk mineral tulang apatit. Pada penelitian ini, proses PEO pada paduan Mg seri AZ31B dimodifikasi dengan penambahan serbuk nano apatit di dalam elektrolit Na3PO4-KOH. Penyisipan apatit di dalam lapisan diamati dengan memvariasikan waktu proses PEO yaitu 10, 15, dan 20 menit. Sel elektrolisis diberi perlakuan ultrasonikasi selama proses PEO (UPEO) untuk meningkatkan jumlah penyisipan apatit ke dalam lapisan. Berdasarkan hasil XRD, fasa Mg, Mg3(PO4)2, dan MgO terdeteksi pada semua lapisan, dan tambahan fasa Ca5(PO4)3OH terdeteksi pada lapisan UPEO. Hal ini didukung dengan komposisi Ca yang lebih tinggi pada hasil analisis EDS di lapisan UPEO dibandingkan lapisan PEO. Perlakuan ultrasonikasi menghasilkan permukaan lapisan dengan porositas 44% lebih tinggi. lapisan PEO dan UPEO menghasilkan kekerasan 3-5 kali dari substrat. Uji polarisasi menunjukkan nilai rapat arus korosi (Icorr) terendah dimiliki oleh sampel yang dilapisi selama 20 menit. Demikian pula data EIS menunjukkan nilai hambatan total (Rp) paling tinggi pada sampel yang dilapisi selama 20 menit. Analisis EDS setelah uji bioaktivitas di larutan ringer laktat termodifikasi, konsentrasi Ca pada lapisan PEO dan UPEO meningkat.
Magnesium and its alloys exhibit good biocompatibility and similar characteristics to bone, making them suitable for use as bone implants in the orthopedic field. However, its high reactivity causes magnesium and its alloys easily corrode. One of the surface modifications to increase the corrosion resistance of magnesium and its alloys is plasma electrolysis or also known as Plasma Electrolytic Oxidation (PEO). The drastic increase in corrosion resistance in Mg alloys makes it difficult to form apatite bone mineral. In this study, the PEO process in the Mg alloy AZ31B series was modified by adding apatite nanopowder in the Na3PO4-KOH electrolyte. The insertion of apatite in the layer was observed by varying the PEO processing time, namely 10, 15, and 20 minutes. The electrolyzed cell was ultrasonicated during the PEO (UPEO) process to increase the amount of apatite insertion into the coating. Based on XRD results, Mg, Mg3(PO4)2, and MgO phases were detected in all layers, and additional Ca5(PO4)3OH phases were detected in the UPEO layer. This is supported by the higher Ca composition in the EDS analysis results in the UPEO layer compared to the PEO layer. The ultrasonication treatment resulted in a coating surface with 44% higher porosity. PEO and UPEO coatings produce a hardness of 3-5 times that of the substrate. The polarization test showed that the lowest corrosion current density (Icorr) was owned by the coated sample for 20 minutes. Similarly, the EIS data showed the highest total resistance value (Rp) in the samples that were coated for 20 minutes. EDS analysis after the bioactivity test in modified Ringer's lactate solution, the concentration of Ca in the PEO and UPEO layers increased compared to before the test."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library