Ditemukan 4 dokumen yang sesuai dengan query
Shafira Nur Amalia
"Dalam suatu penelitian, dibutuhkan data yang dikumpulkan dan diolah untuk memecahkan permasalahan dan membuktikan hipotesis dalam penelitian. Namun, seringkali data yang diperoleh tidak menyimpan nilai untuk suatu variabel pada observasi yang diharapkan. Data yang tidak tersimpan menyebabkan data penelitian kosong dan berdampak pada penelitian. Jika peristiwa ini terjadi, maka penelitian terindikasi memiliki missing data atau missing values. Salah satu cara untuk mengatasi missing values yaitu dengan imputasi. Imputasi bekerja dengan mengisi nilai pada missing values dengan suatu nilai estimasi yang telah dianalisis dan diputuskan untuk membuat suatu dataset lengkap. Dalam proses imputasi, seringkali ditemukan bahwa data yang digunakan untuk imputasi terkadang memiliki karakteristik yang tidak jelas atau tidak konsisten, maka salah satu solusinya adalah dengan menggunakan metode Fuzzy C-Means (FCM). Estimasi nilai-nilai missing values menggunakan model FCM menghasilkan model prediksi dengan variasi parameter yang beragam sehingga dibutuhkan pendekatan lain untuk menghasilkan model terbaik dengan parameter yang optimal. Hal inilah yang mendasari diperlukannya suatu pendekatan hybrid, yaitu dengan menggabungkan beberapa model machine learning untuk memperoleh hasil estimasi missing values terbaik. Pada penelitian ini, dilakukan implementasi Hybrid Fuzzy C-Means dan Majority Vote (Hybrid FCMMV) pada data Penyakit Paru Obstruktif Kronik (PPOK) tahun 2012-2017 yang diperoleh dari Rumah Sakit Cipto Mangunkusumo (RSCM) untuk memberikan performa imputasi yang lebih baik berdasarkan akurasi, presisi, recall, dan F-Score melalui klasifikasi metode ensemble Random Forest.
In a research study, collected and processed data are needed to solve problems and prove hypotheses. However, the obtained data often do not store the value for a variable in the expected observation. Data that are not stored contribute to the emptying of research data which has an impact on the research itself. If the phenomenon occurs, it indicates that the research has missing data or missing values. One way to overcome missing values is using imputation techniques. The technique works by filling in the missing values with an estimated value that has been analyzed and decided to create a complete dataset. In the process, it is often found that the data being used for imputation have unclear or inconsistent characteristics, which can be solved by implementing Fuzzy C-Means (FCM) method. The estimation of missing values using the FCM model produces predictive models with a variety of parameters, hence another approach to produce the best model with optimal parameters is needed. This underlies the need for a hybrid approach, which is acquired through combining or integrating different machine learning models to earn the best estimation result of missing values. In this study, the implementation of Hybrid Fuzzy C-Means and Majority Vote (Hybrid FCMMV) was conducted on Chronic Obstructive Pulmonary Disease (COPD) data in 2012-2017 from Cipto Mangunkusumo Hospital (RSCM) ) to provide better imputation performance based on accuracy, precision, recall, and F-Score through the classification of the Random Forest ensemble method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ananda Fadhil Eka Prakoso
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.
The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Izzan Nufail Arvin
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.
The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Kevin Razaqa Aulia
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.
The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library