Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 41 dokumen yang sesuai dengan query
cover
Richat Pahlepi
Abstrak :
Automatic Weather Station (AWS) mengalami kendala berupa kerusakan komponen dan kegagalan sistem komunikasi, sehingga menyebabkan data parameter tidak lengkap. Kerusakan komponen juga terjadi pada pyranometer. Penurunan kinerja pyranometer menghasilkan penyimpangan, ketidakpastian pengukuran intensitas radiasi matahari, serta gap data. Imputasi data menjadi salah satu solusi dalam meminimalisir penyimpangan pengukuran dan terjadinya missing data pyranometer AWS. Penelitian ini bertujuan mendesain serta menganalisis performa akurasi model imputasi data intensitas radiasi matahari pyranometer AWS multisite ketika terjadi gap data. Penelitian ini berupaya memanfaatkan kaitan spasio-temporal intensitasi radiasi matahari AWS multisite di dalam model imputasi. Algoritma Long-Short Term Memory (LSTM) digunakan sebagai estimator pada jaringan pyranometer AWS multisite. Tahap pemodelan imputasi data meliputi pengumpulan data, pra-pemrosesan data, pembuatan skenario missing data, desain LSTM dan pengujian model. Metode berbasis machine learning ini diharapkan mampu mengimputasi data AWS pada missing data dalam jangka menit maupun jam, jika AWS mengalami kerusakan sistem atau gangguan jaringan komunikasi. Nilai MAPE model LSTM untuk imputasi pyranometer AWS Cikancung untuk missing data 30 menit, 1 jam dan 3 jam berturut-turut yaitu 1,81% ; 2,72% ; dan 5,07%. Nilai MAPE model LSTM untuk AWS Cimalaka untuk missing data 30 menit, 1 jam dan 3 jam berturut-turut yaitu 0,46% ; 1,25% ; dan 3,24%. Nilai MAPE model LSTM untuk AWS Cipasung untuk missing data 30 menit, 1 jam dan 3 jam berturut-turut yaitu 2,30% ; 1,67% ; dan 0,94%. ......Automatic Weather Station (AWS) experienced problems in the form of component damage and communication system failure, resulting in incomplete parameter data. Component damage also occurs in pyranometers. Decreased pyranometer performance results in deviations, uncertainty in measuring solar radiation intensity, and data gaps. Data imputation is one solution to minimize measurement deviations and the occurrence of missing AWS pyranometer data. This research aims to design and analyze the accuracy performance of the multisite AWS pyranometer solar radiation intensity data imputation model when a data gap occurs. This research attempts to utilize the spatio-temporal relationship of multisite AWS solar radiation intensity in the imputation model. The Long-Short Term Memory (LSTM) algorithm is used as an estimator in the multisite AWS pyranometer network. The data imputation modeling stage includes data collection, data pre-processing, creating missing data scenarios, LSTM design and model testing. This machine learning-based method is expected to be able to impute AWS data for missing data in minutes or hours, if AWS experiences system damage or communication network disruption. The MAPE value of the LSTM model for the AWS Cikancung pyranometer for missing data of 30 minutes, 1 hour and 3 hours respectively is 1.81%; 2.72% ; and 5.07%. The MAPE value of the LSTM model for AWS Cimalaka for missing data of 30 minutes, 1 hour and 3 hours respectively is 0.46%; 1.25% ; and 3.24%. The MAPE value of the LSTM model for AWS Cipasung for missing data of 30 minutes, 1 hour and 3 hours respectively is 2.30%; 1.67% ; and 0.94%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ian Lord Perdana
Abstrak :
Meningkatnya jumlah investor dari tahun ke tahun di pasar modal berbagai negara mengakibatkan proses pengambilan keputusan dalam membeli saham menjadi salah satu hal yang penting. Tahapan ini merupakan tahapan yang penting karena akan memengaruhi tingkat kekayaan atau pendapatan yang akan diterima oleh seorang investor. Dalam membantu proses pemilihan saham tersebut, seorang investor dapat menggunakan analisa teknikal atau analisa fundamental dalam prosesnya. Namun seiring dengan perkembangan teknologi dan juga kemudahan dalam mengakses data harga indeks saham, maka proses prediksi selanjutnya dapat dilakukan dengan menggunakan analisis big data dalam prosesnya. Penelitian ini akan dilakukan proses prediksi indeks harga saham dengan menggunakan ARIMA dan juga algoritma Long Short-Term Memory untuk pengolahan datanya dan metode web scraping untuk metode pengumpulan data harga indeks saham. Hasil dari penelitian menunjukkan nilai MAPE 1.243% untuk indeks JKSE, 1.005% untuk indeks KLSE, 1.923% untuk indeks PSEI, 1.523% untuk indeks SET.BK dan 3.7944% untuk indeks STI. ......The increasing number of investors from year to year in the capital markets of various countries has made the decision-making process in buying shares become one of the essential things. This stage is crucial because it will affect the level of wealth or income that an investor will receive. In helping the stock selection process, an investor can use technical analysis or fundamental analysis. However, along with technological developments and the ease of accessing stock index price data, the next prediction process can be carried out using big data analysis. This research will carry out the stock price index prediction process using ARIMA and the Long Short-Term Memory algorithm for data processing and web scraping methods for stock index price data collection methods. The study results showed that the MAPE value was 1.243% for the JKSE index, 1.005% for the KLSE index, 1.923% for the PSEI index, 1.523% for the SET.BK index and 3.7944% for the STI index.
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Zihan Nindia
Abstrak :
Pesatnya perkembangan teknologi informasi dan komunikasi telah membawa banyak perubahan dalam kehidupan manusia. Salah satu perkembangan yang paling signifikan adalah munculnya teknologi pesan singkat atau Short Message Service (SMS).  Media SMS sering disalahgunakan sebagai media penipuan terhadap pengguna telepon. Penipuan sering terjadi dengan cara mengirimkan SMS secara masif dan acak hingga mencapai sepuluh ribu per hari kepada semua pengguna dan menjadi SMS spam bagi banyak orang. Klasifikasi teks menggunakan Long-Short Term Memory (LSTM) dan BERT Embbeddings dilakukan untuk mengklasifikasi data SMS ke dalam dua kategori, yaitu spam dan non-spam. Data terdiri dari 5575 SMS yang telah diberi label. Dengan menggunakan metode LSTM + BERT, penelitian ini dapat mencapai nilai accuracy sebesar 97.85%. Metode ini menghasilkan hasil yang lebih baik dari ketiga model sebelumnya. Model LSTM + BERT menghasilkan nilai accuracy 0.65% lebih baik dari LSTM. ......The rapid development of information and communication technology has brought many changes in human life. One of the most significant developments is the emergence of short message service (SMS) technology.  SMS media is often misused as a medium for fraud against telephone users. Fraud often occurs by sending massive and random SMS up to ten thousand per day to all users and becomes SMS spam for many people. Text classification using Long-Short Term Memory (LSTM) and BERT Embeddings is performed to classify SMS data into two categories, namely spam and ham. The data consists of 5575 SMS that have been labeled. By using the LSTM + BERT method, this research can achieve an accuracy value of 97.85%. This method produces better results than the three previous models. The LSTM + BERT model produces an accuracy value of 0.65% better than LSTM.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Henry Prayoga
Abstrak :
Penelitian ini menganalisis akurasi peramalan permintaan produk barang konsumsi cepat (FMCG) menggunakan model Machine Learning, yaitu LSTM (Long Short-Term Memory) dan SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors), dengan data sekunder dari April 2021 hingga April 2024 yang terdiri dari 36 observasi bulanan. Variabel dependen adalah total penjualan, sementara variabel eksogen mencakup pengeluaran per kapita, adopsi produk, proporsi penjualan dari promosi, jumlah toko yang menjual produk, dan pangsa pasar produk. Hasil menunjukkan model LSTM memiliki akurasi lebih tinggi dalam memprediksi nilai penjualan dibandingkan SARIMAX, dengan nilai Mean Absolute Percentage Error (MAPE) yang lebih rendah pada sebagian besar sampel. Analisis korelasi mengungkapkan variabel jumlah toko yang menjual produk dan adopsi produk berpengaruh signifikan terhadap nilai penjualan dalam model LSTM, sedangkan SARIMAX unggul dalam menangkap pola musiman namun memiliki MAPE lebih tinggi. Penelitian ini menyarankan penggunaan model LSTM untuk data time series yang kompleks dan tidak stasioner, sementara SARIMAX lebih cocok untuk data dengan komponen musiman yang kuat. Pemilihan model harus mempertimbangkan karakteristik data dan tujuan analisis. ......This study analyzes the forecasting accuracy of fast-moving consumer goods (FMCG) demand using Machine Learning models, namely LSTM (Long Short-Term Memory) and SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors), utilizing secondary data from April 2021 to April 2024 with a total of 36 monthly observations. The dependent variable is sales value, while the exogenous variables include spend per buyer, product penetration, promo % of value, the number of stores selling, and market share. The results indicate that the LSTM model has higher accuracy in predicting sales value compared to the SARIMAX model, with a lower Mean Absolute Percentage Error (MAPE) for most samples. Correlation analysis reveals that the variables number of stores selling and product penetration significantly influence sales value in the LSTM model, whereas SARIMAX excels in capturing seasonal patterns but has a higher MAPE. This study recommends using the LSTM model for complex and non-stationary time series data, while SARIMAX is more suitable for data with strong seasonal components. Model selection should consider the characteristics of the data and the objectives of the analysis.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akmal Ramadhan Arifin
Abstrak :
Sistem Penilaian Esai Otomatis (SIMPLE-O) dikembangkan oleh Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia untuk ujian bahasa Indonesia. Skripsi ini akan membahas mengenai pengembangan SIMPLE-O untuk penilaian ujian bahasa Indonesia menggunakan metode Siamese Manhattan Long Short-Term Memory (LSTM) dan bahasa pemrograman Python. Terdapat dua dokumen yang akan menjadi input, yaitu jawaban esai dari peserta ujian dan jawaban referensi dari penguji. Kedua jawaban diproses dengan layer LSTM yang sama. Selanjutnya, kemiripan antara keduanya dihitung dengan fungsi persamaan. Pengujian dengan dataset jawaban dummy mendapatkan nilai MAE dan RMSE sebesar 0.0254 dan 0.0346. Kemudia, pengujian dengan dataset jawaban asli mendapatkan nilai MAE dan RMSE terbaik sebesar 0.1596 dan 0.2190. Rata-rata nilai akurasi yang didapatkan adalah 92.82 untuk fase training dan 84.03 untuk validasi.


The Automatic Essay Assessment System (SIMPLE-O) was developed by the Department of Electrical Engineering, Faculty of Engineering, University of Indonesia for the Indonesian language test. This thesis will discuss the development of SIMPLE-O for the assessment of Indonesian language tests using the Siamese Manhattan Long Short-Term Memory (LSTM) method and the Python programming language. There are two documents that will be input, essay answers from examinees and answer answers from examiners. Both answers are processed with the same LSTM layer. Next, the similarity between the two is calculated by the similarity function. Testing with dummy answer dataset produces MAE and RMSE values of 0.0254 and 0.0346. Then, testing with the real answer dataset produces MAE and RMSE values of 0.1596 and 0.2190. The average accuracy value obtained was 92.82 for the training phase and 84.03 for validation.

Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Athina Maria Angelica
Abstrak :
Skripsi ini membahas penerapan Long Short Term Memory RNN dan Manhattan Distance untuk membuat rancangan Sistem Penilaian Esai Otomatis (SIMPLE-O). SIMPLE-O adalah sistem yang sedang dikembangkan Departemen Teknik Elektro UI untuk menilai esai secara otomatis. Sistem ini menggunakan Recurrent Neural Network dengan arsitektur Long Short Term Memory untuk memberikan nilai pada esai Bahasa Jepang. Dari beberapa variasi yang diuji, model yang paling stabil adalah model yang memiliki layer LSTM, Manhattan Distance, dan Dropout dengan dropout rate sebesar 0.3, di-train selama 25 epoch dengan loss function crosscategorical entropy dan optimizer adam, dengan input model ditokenisasi per karakter dengan rata-rata akurasi sebesar 79.93%.
This thesis will explore the application of Long Short Term Memory RNN and Manhattan Distance in designing the Automatic Essay Grading System (SIMPLE-O). SIMPLE-O is a system currently being developed by Departemen Teknik Elektro UI for automatically scoring Japanese essay exams.  Out of the variations tested, the most stable model is the model with the layers LSTM, Manhattan distance, and Dropout with a dropout rate of 0.3, trained for 25 epochs with the loss function cross categorical entropy and adam optimizer, and the model's input being tokenized by character with the highest average accuracy of 79.93%.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdullah Hasan
Abstrak :
Penyakit Demam Berdarah Dengue (DBD) merupakan salah satu penyakit yang penyebarannya sangat cepat. Dengan memprediksi angka insiden penyakit tersebut, diharapkan dapat membantu pemerintah dalam mengatasi penyakit ini. Seiring berkembangnya ilmu pengetahuan, salah satu metode untuk memprediksi penyakit DBD adalah machine learning. Penelitian dilakukan dengan memanfaatkan salah satu metode dalam machine learning yaitu Long Short-Term Memory (LSTM) dalam membangun model prediksi insiden DBD. Pada penelitian sebelumnya, LSTM telah digunakan dalam memprediksi angka insiden DBD di 20 kota di negara China. Pada skripsi ini model LSTM diterapkan untuk memprediksi angka insiden DBD di DKI Jakarta dengan menggunakan data cuaca dan insiden DBD. Hasil implementasi LSTM dalam memprediksi angka insiden DBD menunjukkan bahwa model terbaik diperoleh dengan menggunakan proporsi data training-testing 90%-10% dengan RMSE dan MAE berdasarkan data test. Nilai RMSE pada wilayah Jakarta Pusat, Jakarta Timur, Jakarta Barat, Jakarta Utara, dan Jakarta Selatan adalah 5,218412, 9,570137, 10,527401, 6,496117, dan 5,952310. Nilai MAE pada wilayah yang sama secara berturut-turut adalah 4,016646, 7,791134, 8,405053, 5,279802, dan 4,416999. ......Dengue Hemorrhagic Fever (DHF) is a disease that spreads very fast. By predicting the incidence of the disease, it is expected to help the government in overcoming this disease. As the development of science, one method to predict DHF is machine learning. The study was conducted by utilizing one method in machine learning that is Long Short Term-Memory (LSTM) in building a DHF incident prediction model. In previous studies, LSTM has been used in predicting the incidence of DHF in 20 cities in China. In this thesis the LSTM model is applied to predict the number of DHF incidents in DKI Jakarta by using weather data and DHF incidents. The results of LSTM implementation in predicting the number of DHF incidents showed that the best model was obtained using the proportion of training data-testing 90% -10% with RMSE and MAE based on test data. The RMSE values in the Central Jakarta, East Jakarta, West Jakarta, North Jakarta and South Jakarta areas are 5.218412, 9.570137, 10.527401, 6.496117, and 5.952310. MAE values in the same region are 4,016646, 7.791134, 8.405053, 5.279802, and 4.416999.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanif Zufar Rafif
Abstrak :
Komunikasi yang efektif sangat penting untuk penyediaan layanan kesehatan yang berkualitas. Di rumah sakit, pasien yang kemampuan komunikasinya terbatas secara fisik mungkin menghadapi tantangan dalam mengungkapkan kebutuhan dasar mereka kepada penyedia layanan kesehatan. Untuk mengatasi masalah ini, dalam penelitian ini dikembangkan sistem pengenalan isyarat tangan untuk pasien dengan keterbatasan fisik. Sistem ini menggunakan Mediapipe dan long short-term memory (LSTM) model untuk mendeteksi dan mengklasifikasi 24 kelas isyarat tangan. Isyarat tangan untuk pasien yang digunakan berdasarkan kartu single hand sign communication, yang dibuat oleh Derek Tune, seorang intrepeter bahasa isyarat pada tahun 2012. Akuisisi data hand landmark dalam bentuk video sepanjang 10 frame untuk setiap kelas isyarat tangan, yang kemudian diolah dan dianalisis menggunakan model LSTM. Model LSTM dilatih menggunakan teknik early stopping untuk mendapatkan performa optimal, menghasilkan tingkat akurasi model 85,53% dengan presisi 0,911. Model dapat mendeteksi isyarat tangan secara waktu nyata dengan waktu inferensi 130 milidetik. Sistem ini juga dirancang untuk mengirim pesan notifikasi secara otomatis ke penyedia layanan kesehatan melalui bot Telegram. Secara keseluruhan, sistem pengenalan isyarat tangan pasien memiliki potensi untuk meningkatkan komunikasi antara pasien dan penyedia layanan kesehatan dan memungkinkan pasien penyandang disabilitas untuk lebih mudah memenuhi kebutuhan dasar mereka. ......Effective communication is essential to provide quality health services. In hospitals, patients with physically limited communication skills may face challenges expressing their basic needs to health care providers. To overcome this problem, this research developed a hand signal recognition system for patients with physical limitations. This system uses the Mediapipe model and long shortterm memory (LSTM) to detect and classify 24 classes of hand signals. Hand signals for patients used are based on the single hand sign communication card, which was made by Derek Tune, a sign language interpreter in 2012. Acquisition of hand landmark data in the form of a 10-frame video for each hand signal class, which is then processed and analyzed using LSTM models. The LSTM model minimizes using early stopping techniques to get optimal performance, resulting in a model accuracy rate of 85.53% with a precision of 0.911. The model can detect real-time hand signals with an inference time of 130 milliseconds. The system is also designed to automatically send message notifications to healthcare providers via Telegram bots. Overall, patient hand signal recognition systems have the potential to improve communication between patients and healthcare providers and enable patients with disabilities to meet their basic needs more easily.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aqila Dzikra Ayu
Abstrak :
Pertahanan negara penting untuk menjaga negara dari ancaman dan gangguan yang ada. Namun, industri pertahanan yang untuk mendukung pertahanan negara masih kurang optimal, seperti kebutuhan misil yang belum bisa disediakan oleh industri pertahanan. Ketersediaan misil sangat terbatas karena bergantung pada politik dari negara yang membuatnya. Diperlukan solusi yang memungkinkan negara untuk mengembangkan misil secara mandiri tanpa melibatkan pihak luar negeri. Misil adalah suatu sistem dinamik yang bersifat non-linear, time-varying, multivariabel, dapat memiliki coupling, dan rentan gangguan ketika digunakan. Oleh karena itu, dibutuhkan pengendali yang dapat mengendalikan sistem misil yang rumit. Pada penelitian ini, diusulkan pengendali misil berbasis long-short term memory (LSTM) karena arsitekturnya yang cocok untuk data sekuensial seperti data pengendali. Pengendali misil berbasis LSTM menghasilkan hasil prediksi yang dapat mengikuti data asli dengan MSE rendah. Kinerja pengendali berbasis LSTM lalu dibandingkan dengan pengendali misil berbasis deep neural network. Hasil penelitian menunjukkan bahwa pengendali berbasis LSTM menghasilkan MSE pelatihan dan pengujian yang lebih rendah dari pengendali misil berbasis deep neural network. ......National defense is essential to protect the country from existing threats and disturbances. However, the defense industry is still not optimal to support national defense, such as the need for missiles that the industry cannot provide. The availability of missiles is limited due to the politics of the country who made them. A solution is needed to allow our country to develop missiles independently without involving foreign parties. The missile is a dynamic system that is non-linear, time-varying, multivariable, coupled, and susceptible to interference when operated. Therefore, a controller is needed to control the complex missile system. This research proposes a long-short term memory (LSTM)-based missile controller because its architecture is suitable for sequential data, such as controller data. The LSTM-based missile controller produces results that can follow the original data with low MSE. The performance of the LSTM-based missile controller is then compared with the deep neural network-based missile controller. The results showed that the LSTM-based missile controller resulted in lower training and testing MSE than the deep neural network-based missile controller.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yogie Wisesa
Abstrak :
Indonesia merupakan negara tropis yang memiliki dua musim yaitu musim kemarau dan musim hujan. Akan tetapi, kondisi cuaca setiap harinya tidak dapat diprediksi karena pengaruh perubahan iklim yang terjadi. Hujan bisa terjadi kapan saja di musim kemarau dan begitu juga sebaliknya. Hal ini menyebabkan perbedaan suhu di setiap harinya. Penelitian ini bertujuan untuk menganalisa pengaruh perubahan suhu dan cuaca terhadap penggunaan listrik di gedung kampus pendidikan khususnya penggunaan pendingin ruangan. Untuk itu dilakukan pemilihan fitur data cuaca menggunakan Pearson Correlation Coefficient (PCC) dan user behaviour modelling dengan menggunakan dua metode yaitu Long Short Term Memory (LSTM) dan penambahan lapisan convolutional neural network (CNN) pada metode LSTM. Setelah dilakukan modelling, maka akan dilakukan prediksi dan akurasinya akan untuk menentukan metode mana yang lebih cocok untuk kasus ini. Metode gabungan CNN-LSTM mendapatkan skor tertinggi dengan skor R2 sebesar 0,83 dan MAE sebesar 136,55. Penggunaan data cuaca terbukti memiliki pengaruh terhadap akurasi model. Meskipun cuaca di Indonesia tidak menentu dan penggunaan pendingin ruangan yang tidak teratur, faktor cuaca seperti rata-rata suhu masih memiliki pengaruh terhadap penggunaan pendingin ruangan di gedung institusi pendidikan. ......Indonesia is a tropical country that has two seasons, namely the dry season and the rainy season. However, daily weather conditions cannot be predicted due to the influence of climate change. Rain can occur at any time in the dry season and vice versa. This causes temperature differences on a daily basis. This study aims to analyze the influence of temperature and weather changes on electricity use in educational campus buildings, especially the use of air conditioning. For this reason, weather data will be selected using Pearson Correlation Coefficient (PCC) and user behavior modeling using two methods, namely Long Short Term Memory (LSTM) and the addition of a convolutional neural network (CNN) layer to an LSTM method. After modeling, predictions will be made and the accuracy will be measured to determine which method is more suitable for this case. The combined CNN-LSTM method got the highest score with an R2 score of 0.83 and MAE of 136.55. The use of weather data has proven to have an influence on model accuracy. Although the weather in Indonesia is erratic and the use of air conditioning is unmonitored, weather factors such as average temperature and rain still have an influence on the use of air conditioning in educational institution buildings.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5   >>