Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Setiawan
Abstrak :

Misalkan G=(V(G),E(G)) adalah graf dengan himpunan simpul V(G) dan himpunan busur E(G). Misalkan f∶E→{1,2,… ,|E(G)|} suatu pemetaan bijektif. Untuk setiap simpul u ∈V(G), bobot dari simpul u adalah w(u)=∑_(e∈E(u))▒〖f(e)〗, dimana E(u) adalah himpunan busur yang bersisian dengan u. Jika untuk setiap u, v∈V(G) berlaku w(u)≠w(v) maka f disebut pelabelan antiajaib dari G. Selanjutnya, f disebut pelabelan antiajaib lokal jika untuk u,v∈V(G) dengan u dan v  bertetangga, maka w(u)≠w(v). Pelabelan antiajaib lokal memunculkan sifat pewarnaan simpul dimana simpul u diberi warna berdasar bobot w(u). Bilangan kromatik antiajaib lokal graf G, dinotasikan X_la (G) adalah banyaknya warna minimum pada pelabelan simpul yang ditimbulkan oleh pelabelan antiajaib lokal. Operasi perkalian korona dari dua graf G dan H, dinotasikan dengan G∘H, adalah graf yang dibentuk dari graf G dan graf H dengan menyalin graf H sebanyak |V(G)|, sebut H_1,H_2,…,H_|V(G)| selanjutnya ditambahkan busur sehingga semua simpul di H_i bertetangga dengan simpul x_i di G, untuk 1 ≤ i ≤ |G|. Tesis ini membahas bilangan kromatik antiajaib lokal graf perkalian korona dua lintasan, yaitu〖 X〗_la (P_n∘P_k ), dimana  k=2,3,5. Hasil penelitian menunjukkan bahwa bilangan kromatik pelabelan simpul antiajaib lokal, 〖 X〗_la (P_n∘P_k ), untuk  k=2,3,5 adalah  X_la (P_n∘P_2 )=6 untuk n≥4 ,〖 X〗_la (P_n∘P_3 )=6,untuk n≥4 and X_la (P_n∘P_5 )=7, untuk n ≥5.


Let G=(V,E) be a graph with vertex set V and edge set E. Let f:E→{1,2,…,|E|} be a bijection map. For each vertex u ∈V(G), the weigh of vertex u is w(u)=∑_(e∈E(u))▒〖f(e)〗, where E(u) is the set of edges incident to u. If for each u,v∈V(G), w(u)≠w(v) then f is called antimagic labelling of G. Furthermore, f is called antimagic labelling of G if for any two adjacent vertices u,v∈V(G), then w(u)≠w(v). The local antimagic labeling induces a proper vertex coloring of G where the vertex v is assigned the color (vertex sum) w(v).  The local antimagic chromatic number, denoted X_la (G), is the minimum number of colors taken over all colorings induced by local antimagic labelings of G. Let G and H be two graphs. The corona product graph G∘H is obtained by taking one copy of  G along with |V(G)|  copies of H, and via putting extra edges making the ith vertex of G adjacent to every vertex of the ith copy of H, where 1≤i ≤|V(G)|. This thesis discusses the local antimagic chromatic number of corona product graph two paths,〖 X〗_la (P_n∘P_k ), where k=2,3,5. The result showed that the chromatic number of local antimagic vertex coloring P_n∘P_k,for k=2,3,5 are X_la (P_n∘P_2 )=6 for n≥4,〖 X〗_la (P_n∘P_3 )=6,for n≥4,X_la (P_n∘P_5 )=7, for n≥5.
 

 

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Annisa Wardhani
Abstrak :

Misalkan 𝐺 = (𝑉, 𝐸) adalah suatu graf sederhana dengan himpunan simpul tak kosong 𝑉 dan himpunan busur 𝐸. Pewarnaan simpul pada graf 𝐺 adalah pemberian warna untuk setiap simpul di 𝐺 dengan satu warna dan setiap dua simpul yang bertetangga memiliki warna yang berbeda. Misalkan pada graf 𝐺 didefinisikan fungsi bijeksi 𝑓: 𝐸 → {1, 2, … , |𝐸|} dengan |𝐸| adalah banyaknya busur. Untuk setiap simpul 𝑣 ∈ 𝑉, bobot simpul 𝑣 adalah 𝑤(𝑣) = ∑𝑒∈𝐸(𝑣) 𝑓(𝑒), dengan 𝐸(𝑣) merupakan himpunan busur yang hadir pada 𝑣. Graf 𝐺 dikatakan graf antiajaib lokal apabila dapat dilakukan pelabelan antiajaib lokal sehingga untuk semua busur 𝑣𝑢 ∈ 𝐸, berlaku 𝑤(𝑣) ≠ 𝑤(𝑢). Dalam hal ini fungsi 𝑓 disebut pelabelan antiajaib lokal pada 𝐺. Bobot simpul berbeda yang dihasilkan dari pelabelan 𝑓 dapat dikatakan sebagai warna simpul yang berbeda. Minimum dari banyaknya warna yang terpakai pada pewarnaan antiajaib lokal di graf 𝐺 disebut bilangan kromatik antiajaib lokal dari 𝐺, 𝜒𝑙𝑎(𝐺). Pada penelitian ini dibahas mengenai pewarnaan simpul antiajaib lokal pada graf sapu ganda 𝐷𝐵𝑛,𝑚 dengan 𝑛 ≥ 4 dan 𝑚 ≥ 2. Graf sapu ganda 𝐷𝐵𝑛,𝑚 didapat dari lintasan 𝑃𝑛 dengan 𝑛 simpul dan dua bintang 𝑆𝑚 dengan 𝑚 + 1 simpul yang kedua simpul daun 𝑃𝑛 merupakan simpul pusat dari masing-masing 𝑆𝑚. Diperoleh bilangan kromatik simpul antiajaib lokal dari graf sapu ganda 𝜒𝑙𝑎(𝐷𝐵𝑛,𝑚) = 2𝑚 + 1.


Let 𝐺 = (𝑉, 𝐸) be a simple graph with non-empty set of vertices 𝑉 and set of edges 𝐸. Vertex coloring on a graph 𝐺 is an assignment color for each vertex of 𝐺, one vertex by one color and two adjacent vertices has different color. Suppose in graph 𝐺 is defined a bijective function 𝑓: 𝐸 → {1, 2, … , |𝐸|} where |𝐸| is number of edges. For every vertex 𝑣 ∈ 𝑉, the weight of vertex 𝑣 is 𝑤(𝑣) = ∑𝑒∈𝐸(𝑣) 𝑓(𝑒),where 𝐸(𝑣) is a set of edges incident to vertex 𝑣. The graph 𝐺 is called as local antimagic if local antimagic labeling could be done so that for all edges 𝑣𝑢 ∈ 𝐸 satisfy 𝑤(𝑣) ≠ 𝑤(𝑢). In this case, function 𝑓 is called local antimagic labeling in 𝐺. A different weight of vertex that produced by the labeling can be seen as a different color of vertex in 𝐺. The minimum number of colors that be used by the local antimagic coloring is called local antimagic chromatic number of 𝐺, 𝜒𝑙𝑎(𝐺). This thesis examines the local antimagic coloring of double broom graph 𝐷𝐵 𝑛,𝑚 with 𝑛 ≥ 4 and 𝑚 ≥ 2. A double broom graph 𝐷𝐵𝑛,𝑚 is obtained from path 𝑃𝑛 with 𝑛 vertices and two stars 𝑆 𝑚 with 𝑚 + 1 vertices where both pendant vertices of 𝑃𝑛 are the center vertices of both 𝑆 𝑚. The vertex antimagic local chromatic number of double broom graph 𝜒𝑙𝑎(𝐷𝐵𝑛,𝑚) = 2𝑚 + 1.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library