Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 32 dokumen yang sesuai dengan query
cover
Guntur Tri Setiadanu
Abstrak :
Telah dilakukan sintesis LiFePO4/C sebagai material katoda baterai lithium ion dengan menggunakan metode hidrotermal dari bahan LiOH, NH4H2PO4, FeSO4.7H2O, carbon black dan sukrosa. Proses hidrotermal dilakukan pada suhu reaktor 180⁰C dengan lama waktu penahanan 20 jam. Penambahan karbon dilakukan dengan 2 cara. Pertama menggunakan sukrosa sebagai sumber karbon yang dilarutkan bersama prekusor dan kedua menggunakan carbon black yang ditambahkan setelah proses hidrotermal sebelum proses kalsinasi. Temperatur kalsinasi divariasikan pada 500, 600 dan 750⁰C selama 5 jam. Proses dekomposisi termal dianalisis menggunakan DTA-TGA analyzer, karakterisasi fasa dilakukan dengan XRD, morfologi dengan SEM/EDX, nilai konduktifitas dan kapasitansi material dengan LCR-EIS, dan performa baterai dengan pengujian charge-discharge menggunakan baterai analyzer. Hasil LiFePO4/C yang murni berbentuk flake berhasil disintesis dengan penambahan carbon black 5 wt%, sedangkan untuk penambahan karbon melalui pelarutan sukrosa masih terdapat pengotor Fe3(PO4)2 pada hasil kalsinasi. Temperatur kalsinasi optimal adalah 750⁰C dengan ukuran kristalit 39,7 nm, tebal butiran flake 80 nm dan besar butiran rata-rata 427 nm. Konduktifitas LiFePO4 murni terukur 5 x 10-7 S/cm dan konduktifitas LiFePO4/C adalah 2,23 x 10-4 S/cm yang dihasilkan dari sampel dengan tambahan carbon black 5wt% kalsinasi 750⁰C. Dari pengujian charge/discharge didapatkan siklus terbaik dihasilkan oleh sampel LiFePO4/C yang dikalsinasi 750⁰C yang stabil dengan tegangan 3,3-3,4 V, kapasitas spesifik dihasilkan pada 0,1 C = 11,6 mAh/g ; 0,3C = 10,78 mAh./g dan 0,5 C = 9,45 mAh/g. ......LiFePO4/C has been succesfully synthesized through hydrothermal method from LiOH, NH4H2PO4, and FeSO4.7H2O as starting materials and either carbon black or sucrose as carbon source used as cathode material for lithium ion batteries. In this work, hydrothermal reaction temperature was at 180C for 20 hours.Carbon sources were added in two routes. Firstly, sucrose solution was mixed with precursor solution before hydrothermal reaction. Secondly carbon black was added after hydrothermal reaction before calcination process. Calcination temperatures were performed at 500, 600, and 750C each for 5 hours. Thermal decomposition process was analyzed using DTA-TGA analyzer, phases and morphological were characterized by using XRD and SEM/EDX measurement, conductivity and electrical capacity were characterized by EIS measurement, and batteries performance were tested with charge discharge testing by battery analyzer. Pure LiFePO4/C flake shaped was successfully synthesized with the addition of 5 wt% carbon black, while the addition of carbon through the dissolution of sucrose still contained impurity from Fe3(PO4)2 in calcination product. Optimal calcination temperature was obtained at 750⁰C with crytallite size of 39.7 nm, flake particles diameter of 80 nm with particles average length of 427 nm. Pure LiFePO4 conductivity was measured to be 5 x 10-7 S/cm and conductivity LiFePO4/C was 2.23 x 10-4 S/cm produced from samples with carbon black addition of 5 wt% and calcined at 750⁰C. Charge/discharge cycles test showed that best battery performance was obtained from the sample with carbon black of 5wt% calcined at 750⁰C, with a stable voltage 3.3 to 3.4 V, specific capacity of 0.1 C = 11.6 mAh/g ; 0.3C = 10.78 mAh./g dan 0.5 C = 9.45 mAh/g.
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43933
UI - Tesis Membership  Universitas Indonesia Library
cover
Hugo Abraham
Abstrak :
Optimalisasi kinerja untuk anoda baterai lithium-ion (LIBs) dapat dilakukan dengan mencampur ZnO-nanorods dengan ketentuan Karbon Aktif. Dalam penelitian ini, ZnO-nanorods di sintesis melalui suatu proses yang menggunakan bahan dasar HMTA dan Zinc Oxide. Untuk mengatasi masalah ini karbon telah diaktifkan karena memiliki sifat konduktivitas yang baik dan dapat mempengaruhi volume yang terjadi. Variasi dalam persentase nanorods ZnO yang 4wt%, 7wt%, dan 10wt%. Karakterisasi sampel diperiksa menggunakan X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), dan Brunauer-Emmett-Teller (BET). Kinerja baterai sampel diperoleh dengan Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV), dan Charge-Discharge (CD) pengujian setelah dirangkai menjadi baterai sel berbentuk koin. Penelitian ini membahas tentang pengaruh penambahan karbon aktif terhadap komposit nanorod ZnO. Hasil penelitian menunjukkan bahwa nanorod AC-10%/ZnO-7% memiliki kapasitas spesifik tertinggi 270,9 mAh/g. Menurut tes Brunner-Emmet-Teller (BET), luas permukaan terbesar adalah 631.685 m2/g. Kinerja elektrokimia paling baik diperoleh oleh nanorods AC-10%/ZnO-7%.
Performance optimization for lithium-ion battery anodes (LIBs) can be done by mixing ZnO-nanorods with the provisions of Active Carbon. In this study, ZnO-nanorods synthesized a process that uses basic ingredients HMTA and Zinc Oxide, in addition. To solve this problem, carbon has been activated because it has good conductivity properties and can affect the volume that occurs. Variations in the percentage of ZnO nanorods which are 4wt%, 7wt%, and 10wt%. Characterization of the samples was examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Brunauer-Emmett-Teller (BET). The battery performance of the samples was obtained by Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV), and Charge-Discharge (CD) testing after being assembled into coin cell batteries. This study discusses the effect of adding activated carbon to ZnO nanorods composites. The results showed that the AC-10%/ZnO-7% nanorods have the highest specific capacity of 270.9 mAh/g. According to Brunner-Emmet-Teller (BET) test, the largest surface area was 631.685 m2/g. Electrochemical performance is best obtained by AC-10% / ZnO-7% nanorods.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widhiatmaka
Abstrak :
[Komposit Li4Ti5O12 dan Sn untuk material anoda baterai lithium-ion dipreparasi dengan 2 rute, yaitu sintesis Li4Ti5O12 (LTO) dengan metode hidrotermal dan mixing LTO dan Sn menggunakan ball mill. Tujuan dari penelitian ini adalah untuk memperoleh suhu kalsinasi yang optimum pembentukan fasa spinel LTO serta penambahan berat serbuk Sn yang tepat untuk memperoleh peningkatan performa LTO. Sampel dikarakterisasi menggunakan DT/TGA, XRD, SEM EDX, dan EIS. Sedang properti elektrokimia dianalisis menggunakan tes charge/discharge battery analyzer. Hasil menunjukkan telah terbentuk fasa spinel LTO dan butir tumbuh 17, 20, dan 40 nm masing-masing untuk suhu kalsinasi 500, 600, dan 700oC. Foto SEM memperlihatkan butir-butir berbusa dan mengalami aglomerasi yang merupakan efek dari proses sintesis hidrotermal. Dari penelitian ini diperoleh sampel komposit LTO 500oC dan Sn 10% dengan nilai konduktivitas tertinggi yaitu 9,06 x 10-7 S/cm. Uji cyclic voltammetry menunjukkan pasangan anodik-katodik tegangan reduksi-oksidasi LTO 1,5 dan 1,7 V, serta 1,71 dan 2,11 V untuk TiO2. Sedangkan tegangan litiasi Sn terdeteksi0,61 V. Untuk uji charge/discharge komposit LTO 500oC dan Sn 10% memperlihatkan penambahan Sn akan memberi keuntungan saat tegangan rendah (0,6 V) yaitu komposit masih memiliki kapasitas. Kapasitas spesifik untuk komposit LTO 500oC dan Sn 10% mencapai 110 mAh/g dengan C/3.;Li4Ti5O12 and Sn composites as anode material for lithium-ion battery have been prepared with two routes, ie. synthesis of Li4Ti5O12 (namely LTO) with hydrothermal method and mixing LTO and Sn using mechanical ball milling method. The purposes of this study are to obtain the optimum calcination temperatures LTO spinel phase formation and the precise addition of Sn powder is to obtain the improved performance of LTO. Samples have been characterized by DT/TGA, XRD, SEM EDX, and ElS. Meanwhile, electrochemical properties were analyzed using a charge-discharge test battery analyzer. Results showed that LTO spinel phase has been formed and the grains growth 17, 20, and 40 nm respectively for calcination temperature 500, 600, and 700°C. SEM photograph showing a grain foaming and run into agglomeration which is the effect of hydrothermal synthesis process. From this study, LTO 500oC and 10%Sn composite has the highest conductivity value ie 9.06 x 10-7 S/cm. Test cyclic voltammetry showed a couple of anodic-cathodic reduction-oxidation voltage LTO 1.48 and 1.74 V, and 1.65 and 2.11 V for TiO2. Lithiation voltage for Sn at 0.61 V. For test charge/discharge LTO 500oC and 10%Sn composite showed the addition of Sn will benefit current low voltage (0.6 V) is a composite still has capacity. Specific capacity for LTO 500oC and 10%Sn composite up to 110 mAh/g with C/3.;Li4Ti5O12 and Sn composites as anode material for lithium-ion battery have been prepared with two routes, ie. synthesis of Li4Ti5O12 (namely LTO) with hydrothermal method and mixing LTO and Sn using mechanical ball milling method. The purposes of this study are to obtain the optimum calcination temperatures LTO spinel phase formation and the precise addition of Sn powder is to obtain the improved performance of LTO. Samples have been characterized by DT/TGA, XRD, SEM EDX, and ElS. Meanwhile, electrochemical properties were analyzed using a charge-discharge test battery analyzer. Results showed that LTO spinel phase has been formed and the grains growth 17, 20, and 40 nm respectively for calcination temperature 500, 600, and 700°C. SEM photograph showing a grain foaming and run into agglomeration which is the effect of hydrothermal synthesis process. From this study, LTO 500oC and 10%Sn composite has the highest conductivity value ie 9.06 x 10-7 S/cm. Test cyclic voltammetry showed a couple of anodic-cathodic reduction-oxidation voltage LTO 1.48 and 1.74 V, and 1.65 and 2.11 V for TiO2. Lithiation voltage for Sn at 0.61 V. For test charge/discharge LTO 500oC and 10%Sn composite showed the addition of Sn will benefit current low voltage (0.6 V) is a composite still has capacity. Specific capacity for LTO 500oC and 10%Sn composite up to 110 mAh/g with C/3., Li4Ti5O12 and Sn composites as anode material for lithium-ion battery have been prepared with two routes, ie. synthesis of Li4Ti5O12 (namely LTO) with hydrothermal method and mixing LTO and Sn using mechanical ball milling method. The purposes of this study are to obtain the optimum calcination temperatures LTO spinel phase formation and the precise addition of Sn powder is to obtain the improved performance of LTO. Samples have been characterized by DT/TGA, XRD, SEM EDX, and ElS. Meanwhile, electrochemical properties were analyzed using a charge-discharge test battery analyzer. Results showed that LTO spinel phase has been formed and the grains growth 17, 20, and 40 nm respectively for calcination temperature 500, 600, and 700°C. SEM photograph showing a grain foaming and run into agglomeration which is the effect of hydrothermal synthesis process. From this study, LTO 500oC and 10%Sn composite has the highest conductivity value ie 9.06 x 10-7 S/cm. Test cyclic voltammetry showed a couple of anodic-cathodic reduction-oxidation voltage LTO 1.48 and 1.74 V, and 1.65 and 2.11 V for TiO2. Lithiation voltage for Sn at 0.61 V. For test charge/discharge LTO 500oC and 10%Sn composite showed the addition of Sn will benefit current low voltage (0.6 V) is a composite still has capacity. Specific capacity for LTO 500oC and 10%Sn composite up to 110 mAh/g with C/3.]
Fakultas Teknik Universitas Indonesia, 2015
T44341
UI - Tesis Membership  Universitas Indonesia Library
cover
Panjaitan, Abyan Abdillah Saoloan
Abstrak :
Konsistensi kenaikan produksi plastik diyakini meningkatkan jumlah limbah plastik yang terbuat. Diperkirakan sampah plastik yang dianggap salah dikelola di Indonesia per 2020 mencapai 4.8 juta ton/tahun, dengan kriteria 48% sampah dibakar, 13% dibuang di darat atau tempat pembuangan sampah tidak resmi, serta 9% ke saluran air laut. Oleh karena itu, diperlukan cara pengelolaan sampah yang tepat yaitu dengan cara mendaur ulang sampah plastik. Salah satu daur ulang sampah yang canggih adalah pemanfaatkan sampah plastik menjadi energi terbarukan seperti baterai. Dalam penelitian ini, LTO disintesis dengan karbon aktif (AC) yang dasar dari sampah pelastik (PET), dengan komposisi karbon aktif yang berbeda sebesar 3 wt%, 5 wt%, dan 7 wt%. Karbon aktif tersebut terbuat dari campuran sampah pelastik dan bentonit (9:1) yang dikarbonisasi melalui tungku pembakaran pada suhu 400 °C dalam atmosfer inert nitrogen menjadi karbon amorf hitam. Setelah karbonisasi, karbon tersebut diaktivasi melalui proses empat utama: pencampuran dengan NaOH, sintering dalam atmosfir nitrogen, pencucian, dan pengeringan. LTO/AC yang sudah disintesis lalu diubah menjadi anoda baterai lithium-ion setengah sel. Kemudian anoda tersebut dikarakterisasi melalui Uji Voltametri Siklus, Uji Pengisian Daya Muatan (CD) dan Spektroskopi Impedansi Listrik (EIS). Hasil akhir dari pengujian ini menunjukkan bahwa penambahan karbon aktif dapat meningkatkan konduktifitas dari baterai lithium-setengah sel. Sesuai dengan hasil pengujian CV, penambahan karbon sebesar 7% wt% meningkatkan kapasitas spesifik sebesar 143.4 (mAh/g). Hasil pengujian pada penelitian ini menunjukkan bahwa penambahan karbon aktif optimal adalah sebesar 7 wt%. ......The consistent increase in plastic production is believed to increase the amount of plastic waste made. It is estimated that plastic waste that is considered to be mismanaged in Indonesia as of 2020 will reach 4.8 million tons/year, with the criteria that 48% of waste is burned, 13% is disposed of on land or unofficial landfills, and 9% into seawater. Therefore, proper waste management is needed, namely by recycling plastic waste. One of the sophisticated waste recycling is the utilization of plastic waste into renewable energy such as batteries. In this research, LTO/AC was synthesized with activated carbon made of plastic waste, the different composition of 3 wt%, 5 wt%, and 7 wt% has been carried out. The activated carbon was made using the mixture of plastic waste and bentonite nano clay (9:1) that will go through the slow pyrolysis carbonization process, which is performed under 400°C in an inert atmosphere of N2 with the help of a furnace into black amorphous carbon. After the carbonization, the carbon is activated through four main stages: mixing with NaOH, sintering under a nitrogen atmosphere, washing, and drying. The synthesized LTO/AC materials are then formed into a half-cell lithium-ion battery anode. The half cell lithium-ion battery anodes are then examined using the Cycle Voltammetry Test, Charge Discharge (CD) Test, and Electrical Impedance Spectroscopy (EIS). The final result of this research shows that activated carbon can increase the conductivity of the half-cell lithium battery. According to the results of the CV test, the addition of 7% wt% carbon resulted in a specific capacity of 143.4 (mAh/g). The test results in this research indicate that the optimal addition of activated carbon is 7 wt%.
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Christian Joshua Bagaskoro
Abstrak :
Litium-Ferrous-Fosfat, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFP akan disintesis dengan menggunakan Fe2O3 melalui cara solid-state dengan bantuan H3PO4 and LiOH•H2O. Setelah itu, nikel akan ditambahkan ke LFP secara komposit. Penambahan konten glukosa sebagai sumber karbon akan dilakukan dengan tiga variasi, 6%, 8% dan 10%. Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek variasi konten karbon pada struktur dan morfologi sampel yang dihasilkan. ......Lithium-iron-phosphate, LiFePO4 (LFP) is one of promising candidate in development of battery cathode. In this experiment, the LFP will be synthesize using Fe2O3, H3PO4 and LiOH•H2O as precursors through solid-state process. Nickel will be added to the LFP/C to improve the properties of LFP/C. The addition of varies glucose content as a carbon source will be done, 6%, 8% and 10%. Material characterization of the samples will be done by using Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) to observe the effect of glucose content on the material structure and morphology.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rakha Aditama Anjani
Abstrak :
Lithium Ferro Phosphate (LiFePO4) adalah kandidat yang menjanjikan sebagai bahan sumber energi elektrik yang ramah lingkungan. Penambahan Ni komposit dalam baterai berbasis Li-ion dapat meningkatan performa dari baterai LiFePO4. Dalam penelitian ini, LiFePO4 akan disintesis dengan menggunakan Fe2O3, H3PO4, dan LiOH melalui cara solid-state dan dilakukan perlakuan panas yaitu sintering. Setelah itu, prekursor dikompositkan dengan tiga variasi penambahan konten Nikel dalam % berat, yaitu 5, 7 dan 10% melalui metode solid-state dengan ball mill diberi label LFP/5-Ni, LFP/7.5-Ni dan LFP/10-Ni. Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan Nikel pada struktur dan morfologi sampel yang dihasilkan. ......Lithium Ferro Phosphate (LiFePO4) is a promising candidate as an environmental friendly electric energy sources. The addition of Nickel composite in Lithium-ion battery based can enhance the performance of LiFePO4 batteries. In this experiment, LiFePO4 was synthesized using Fe2O3, H3PO4, and LiOH by solid-state method and heat treated with sintering process. After that, the precursor were composited with the various Nickel composition, in % wt, 5, 7.5 and 10% with solid-state method by using ball mill and labeled as LFP/5-Ni, LFP/7.5-Ni and LFP/10-Ni respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of Nickel addition on structure and morphology of the resulting samples.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Ridho Nugraha
Abstrak :
Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, LTO/C@ZnO disintesis dengan LTO nanorod dengan metode hidrotermal dari TiO2 xerogel yang dibuat dengan metode sol-gel, litium hidroksida (LiOH), Karbon aktif, dan Zinc Oksida (ZnO) nanorod. Tiga variasi penambahan konten ZnO dalam % berat, yaitu, 4, 7 dan 10%, diberi label sampel LTO/C@ZnO-4, LTO C@ZnO-7 dan LTO/C@ZnO-10. Karakterisasi dilakukan menggunakan XRD, SEM, FE-SEM, dan BET. Ini dilakukan untuk mengamati efek penambahan ZnO pada struktur, morfologi, dan luas permukaan sampel yang dihasilkan. Hasil penelitian menunjukkan bahwa kapasitas optimum dari masing- masing sampel adalah 32,84 mAh/g dalam LTO/C@ZnO-4 dengan ukuran kristal 11,86 nm dan luas permukaan 348,736 m2/g. Dalam pengujian cyclic voltametry, menunjukkan pergeseran dalam tegangan reaksi dan pengurangan kapasitas yang disebabkan oleh penambahan C@ZnO dan kurangnya Li4Ti5O12 yang terbentuk. ......Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, LTO/C@ZnO was synthesized with LTO nanorod by hydrothermal method using TiO2 xerogel that prepared by the sol-gel method, lithium hydroxide (LiOH), Activated carbon, and Zinc Oxide (ZnO) nanorod. Three variations of ZnO content addition in weight% , i.e., 4, 7 and 10%, labelled as sample LTO/C@ZnO-4, LTO/C@ZnO-7 and LTO/C@ZnO-10, respectively. The characterizations were made using XRD, SEM, FE-SEM, and BET testing. These were performed to observe the effect of ZnO addition on astructure, morphology, and surface area of the resulting samples. Result showed that the optimum discharge capacity from each samples was 32.84 mAh/g in LTO/C@ZnO-4 with the crystallite size of 11.86 nm and the surface area of 348.736 m2/g. In cyclic voltammetry testing, it shows a shift in reaction voltage and reduction in capacity that caused by the addition of C@ZnO and the lack of Li4Ti5O12 that are formed.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fauzan Hernowo
Abstrak :
Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. LTO dalam bentuk struktur nanorod akan lebih menjanjikan lagi dengan sifatnya yang lebih baik disbanding struktur biasa. Dalam penelitian ini, LTO nanorod akan disintesis dengan menggunakan bubuk TiO2 melalui cara hidrotermal dengan bantuan litium hidroksida (LiOH). Setelah itu, Grafit dan Nano-Timah akan ditambahkan Bersama LTO Nanorod. Tiga variasi penambahan konten Nano-Timah dalam % berat, yaitu, 5, 10 dan 15%, diberi label sampel LTO/C-5%Nano Sn, LTO/C-10%Nano Sn and LTO/C-15%Nano Sn. Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan Nano-Timah pada struktur dan morfologi sampel yang dihasilkan. Hasil menunjukkan bahwa penambahan Nano-Ttimah 10% (LTO/C-10%Nano Sn) memiliki kapasitas spesifik tertinggi dengan 87.07 mAh g-1. Hasil dari tes Electrochemical Impedance Spectroscopy juga menunjukkan LTO/C-10%Nano Sn memiliki konduktivitas terbaik dengan nilai resistansi terkecil. ......Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. LTO in nanorod structure could be even more promising as its properties are better than regular structure. In this investigation, LTO nanorod was prepared by using TiO2 powder then processed by hydrothermal method, with the help of lithium hydroxide (LiOH), resulting in LTO. Graphite and Nano Tin are mixed together with LTO using solid-state method. Three variations of Nano Tin content addition in weight%, i.e., 5, 10 and 15%, labelled as sample LTO/C-5%Nano Sn, LTO/C-10%Nano Sn and LTO/C-15%Nano Sn, respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of Nano Tin addition on structure and morphology of the resulting samples. The result showed that the addition of Nano-Tin of 10% (LTO/C-10%Nano Sn) has the highest specific capacity with 87.07 mAh g-1. According to Electrochemical Impedance Spectroscopy, LTO/C-10%Nano Sn also has the best conductivity with the lowest resistivity. 
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ananta Riezky Bachtiar
Abstrak :
Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, LTO-ZnO/C yang disintesis dengan metode hidrotermal untuk membentuk struktur LTO nanowire dan di grinding Bersama dengan ZnO nanopartikel dan grafit. Tiga variasi penambahan konten ZnO nanopartikel dalam % berat, yaitu, 4, 7 dan 10%, diberi label sampel LTO-ZnO 4%/C 5%, LTO-ZnO 7%/C 5% dan LTO-ZnO 10%/C 5%. Karakterisasi dilakukan menggunakan XRD dan SEM. Uji performa baterai menggunakan metode EIS, CV, dan CD. Hasil penelitian menunjukkan dari CV dan CD kita bias mengetahui bahwa LTO-ZnO 4%/C 5% memiliki performa terbaik dengan potensial kerja 1.595V dan kurva discharge vs C rate terbaik sementara dari hasil uji EIS kita bisa melihat bahwa sampel LTO-ZnO 10%/C 5% memiliki resistivitas terendah yaitu 28.44Ω.
Lithium Titanate, Li4Ti5O12 (LTO) is a promising candidate to be a lithium-ion battery anode. In this experiment LTO-ZnO/C are synthesized with hydrothermal method to form LTO nanowire and grinded with ZnO nanoparticle and graphite to form the composite. Three variables used are the different content of ZnO nanoparticle which are 4, 7 and 10%, labeled as LTO-ZnO 4%/C 5%, LTO-ZnO 7%/C 5% dan LTO-ZnO 10%/C 5%. Characterization is done by XRD and SEM. Battery performance test is done by EIS, CV, and CD. The result of this research shows that in CV and CD testing LTO-ZnO 4%/C 5% perform best with working potential of 1.595V and the best discharge vs C rate curve while from EIS testing we can see that LTO-ZnO 10%/C 5% has the lowest resistivity at 28.44Ω.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zidni Eilma Laallani Chairunnisa
Abstrak :
ABSTRAK
Salah satu bahan aktif paling populer yang digunakan dalam baterai lithium ion adalah Lithium Titanate (Li4Ti5O12), karena menunjukkan sifat regangan nol serta ketahanan tinggi terhadap perubahan volume. Salah satu kelemahannya adalah kapasitasnya yang rendah dan konduktivitas listrik yang rendah. Dalam percobaan ini, Lithium Titanate didoping dengan bahan aktif lain dengan kapasitas teoritis yang lebih tinggi dalam bentuk partikel nano Seng Oksida (ZnO). Perbedaan konsentrasi Zinc Oxide yang digunakan dalam percobaan ini adalah 5%, 8% dan 11% Zinc Oxide. Bahan aktif kemudian dibuat menjadi anoda baterai lithium ion setengah sel. Anoda baterai lithium ion setengah sel kemudian diuji menggunakan Uji Voltametri Siklus, Spektroskopi Impedansi Listrik (EIS) dan Uji Pengisian Daya Muatan (CD). Hasil akhir menunjukkan bahwa dengan penambahan doping Zinc Oxide menggunakan metode solid state dan sintering yang mampu meningkatkan kapasitas KPP dan ketahanan terhadap kehilangan kapasitas, meskipun itu meningkatkan resistansi dalam hasil tes EIS.
ABSTRACT
One of the most popular active materials being used in a lithium ion battery is Lithium Titanate (Li4Ti5O12), as it exhibits zero strain properties as well as high resistance to volume change. One of its disadvantages is its low capacity and low electrical conductivity. In this experiment, Lithium Titanate is doped with another active material with higher theoretical capacity in the form of Zinc Oxide (ZnO) nanoparticles. The different concentrations of Zinc Oxide used in this experiment are 5%, 8% and 11% Zinc Oxide. The active materials are then fabricated into a half-cell lithium ion battery anode. The half-cell lithium ion battery anodes are then tested using the Cycle Voltammetry Test, Electrical Impedance Spectroscopy (EIS) and Charge Discharge (CD) Test. The final results show that with the addition of Zinc Oxide doping using a solid state and sintering method that it is able to enhance the LTO capacity and resistance to capacity loss, although it does increase its resistance in the EIS test results.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4   >>