Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 23 dokumen yang sesuai dengan query
cover
Ery Prasetya
"Ligan adalah suatu basa dan hampir semua iigan dapat menerima proton dalam larutan berair. Reaksi antara ligan (L) dengan proton (H^) dapat dinyatakan dengan L + HT HL. Hampir semua ligan dapat terprotonasi oleh lebih dari satu proton dengan baik, proton yang pertama paling kuat ikatannya dengan ligan, dan proton-proton berikutnya berikatan dengan tingkat kekuatan yang menurun secara teratur. Ligan juga dapat berperan sebagai pengompleks untuk membentuk kompleks dengan suatu logam. Ligan pengompleks yang paling sering digunakan dalam kimia analisa adalah suatu basa dengan kekuatan sedang dan terprotonasi pada kisaran pH tertentu. Penelitian yang dilakukan ini bertujuan untuk menentukan nilai tetapan protonasi senyawa kriptan dan tetapan kestabilan kompleksnya dengan asam Hkriptan [2,2,2], Penentuan dilakukan dengan menggunakan metode titrasi potensiometri menggunakan pH meter. Dari nilai tetapan protonasi dapat diketahui spesi kriptan yang ada didalam larutan. Dengan mempelajari pengaruh logam Ln^^ terhadap pergeseran kurva titrasi asam Hkriptan [2,2,2] dapat diketahui urutan kestabilan kompleks yang terbentuk. Ligan yang digunakan adalah senyawa kriptan [2,2,2], Asam dan basa yang digunakan adalah HCl dan TMH untuk memprotonasi dan mendeprotonasi C222. Logam lantanida yang dipelajari adalah Sm^, dan Yb^^. n Melalui hubungan log = log ([C222H^] / [C222]) + pH dan log Kj = log ([C222H2^^] / [C222H^]) + pH pada suhu 25'^C diperoleh nilai tetapan protonasi pertama (log Ki ) dan nilai tetapan protonasi kedua (log Ki) dari C222 berturut-turut adalah 9,11 dan 6,89. Nilai tetapan deprotonasi untuk 0222112^"^ berturut-turut adalah 10,26 dan 7,10. Sedangkan nilai tetapan stabilitas kriptat pertama (log Pi) untuk logam Sm, Eu dan Yb masing-masing adalah ; 6,01, 5,89 dan 5,69 dan nilai tetapan stabilitas kriptat kedua (log Pj) untuk logam Sm, Eu dan Yb masing-masing adalah ; 10,05, 10,91 dan 11,12"
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2002
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arya Aditya Purbadi
"Salah satu metode untuk menentukan keberadaan ion logam dalam suatu sampel adalah dengan senyawa pengkelat yang mampu berfluorosensi dalam bentuk kompleksnya. Senyawa ligan pengkelat yang dimanfaatkan dalam penelitian ini adalah ligan 2-(1-metil-5-fenil-4,5-dihidro-1H-pirazol-3-yl)piridin. Senyawa ligan tersebut disintesis dengan dua tahap yakni tahap kondensasi Claisen-Schmidt dan tahap penambahan metil hidrazin berlebih. Karakterisasi senyawa ligan yang disintesis dilakukan dengan bantuan instrumentasi seperti spektroskopi FTIR dan NMR. Eksperimen ini bertujuan untuk mempelajari pengaruh konsentrasi ion logam Cu2+ dan Fe3+ yang dikelatkan dengan ligan 2-(1-metil-5-fenil-4,5-dihidro-1H-pirazol-3-yl)piridin, terhadap kemampuannya berfluorosensi sebagai senyawa kompleks.
Selektivitas ligan dalam mengkelat ion logam-pun dipertimbangkan. Variasi konsentrasi kedua ion logam diurutkan dari 0,001; 0,002; 0,003; 0,004; 0,005; 0,006; 0,007; 0,008; 0,009 dan 0,01 mol L-1, dalam keberadaan 0,01 mol L-1 senyawa ligan. Dari hasil penelitian ini, ditemukan bahwa seiring peningkatan konsentrasi ion Cu2+ pada kompleks Cu-ligan, emisi fluorosensinya semakin meredup, pada panjang gelombang 255 nm. Hal yang sama terjadi pada kompleks Fe-ligan, terjadi peredupan emisi seiring dengan meningkatnya konsentrasi Fe3+ pada kompleks Fe-ligan, di atas konsentrasi Fe3+ 0,028 mol L-1, pada panjang gelombang 509 nm. Pada uji selektivitasnya, tercatat bahwa ligan ligan 2-(1-metil-5-fenil-4,5-dihidro-1H-pirazol-3-yl)piridin lebih senang mengkelat ion Fe3+ dibandingkan Cu2+.

One of the method to determine the presence of metal ions in a certain sample, is by using a chelating ligand that gives fluorescent emission when forming it?s complex compound. The ligand compound utilized in this experiment is 2-(1-methyl-5-phenyl-4,5-dihydro-1H-pyrazol-3-yl)pyridine. The organic ligand was synthesized using a two-step reaction: the first step is a Claisen-Schmidt condensation reaction, the second step is the addition of excess methyl hydrazine. Characterization of the ligand synthesized in this experiment, was done by using instruments such as FTIR spectroscopy and NMR. This experiment was to study the effect of Cu2+ and Fe3+ concentrations that were chelatet by 2-(1-methyl-5-phenyl-4,5-dihydro-1H-pyrazol-3-yl)pyridine ligand, on the fluorescent abilities of their respective complex compounds.
The selectivity of the ligand on chelating the two metal ions, was also taken to account. The concentration of both metal ions were varied from 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009 dan 0.01 mol L-1, in the presence of 0.01 mol L-1 ligand. From the experimental results, it is shown that as the concentration of Cu2+ increased in Cu-ligand complex, the fluorescent emission became dimmer, at wavelength 385 nm. The same thing happened with Fe-ligand complex, the fluroscent emission of Fe-ligand became dimmer as the concentration increased, at wavelength 509 nm. In the selectivity test, it was shown that 2-(1-methyl-5-phenyl-4,5-dihydro-1H-pyrazol-3-yl)pyridine ligand was more favorable to chelate Fe3+ ions instead of Cu2+.
"
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64231
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hogantoro Hutomo
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S30704
UI - Skripsi Open  Universitas Indonesia Library
cover
Simamora, Adelina
"Pengompleksan CoII (d') terhadap ligan 1,10-Fenantrolin (Fen) dan 4,7--Dxmetil-1,10-Fenantrolin(Dmfen)memperlihatkan karakteristik yang berbeda dengan pengompleksan MnII (d5) terhadap ligan yang sama. Demikian juga halnya dengan pengompleksan kedua jenis logam tersebut dalam kompleks campurannya dengan ligan rodanida (NCS). Studi terhadap spektra ultraungu-tampak, inframerah, dan sifat magnet kompleks, menerangkan secara lebih terperinci mode pengikatan kompleks. Melalui metode perbandingan mol, diperoleh stoikiometri kompleks M : L = 1 : 3. Spektra ligan terkompleks dalam CoL3 2' di daerah ultraungu memperlihatkan pergeseran batokromik dan kenaikan nilai e, yang secara tidak langsung menunjukkan terjadinya MLCT (Metal Ligan Charge Transfer). Spektra kompleks tersebut di daerah ultraungu dekat-tampak berasal dari transisi elektron MLCT (t,, -* 71*) dan d-d. Fenomena yang sama tidak jelas diamati pada MnL3'+. Ikatan Mn-L lebih lemah ditandai dengan pergeseran batokromik yang amat kecil di daerah ultraungu. Di daerah ultraungu dekat-tampak tidak diamati transisi elektron MLCT. Transisi di daerah ini ditandai dengan intensitas yang sangat lemah yang berasal dari transisi d-d Mn" dalam MnL22+. Penentuan stoikiometri kompleks campuran M:L:NCS dilakukan dengan metode perbandingan mol dengan dua pendekatan, yaitu penambahan NCS secara bertahap masing-masing dalam kompleks ML,2+ dan Diperoleh kesimpulan yang sama, yaitu stoikiometri kompleks M:L:NCS = 1:2:2. Spektra inframerah yang berasal dari kristal kompleks ML,(NCS), memperlihatkan bahwa NCS mengikat Co" dan Mn" melalui sisi N Keberadaan sisi basa S yang bebas dibuktikan melalui penambahan Hgri. Pergeseran u ke daerah 2100 cm-l mengindikasikan terjadinya pengikatan Hg-S. Nilai µof masingmasing kompleks ML,(NCS)2 menunjukkan bahwa konfigurasi elektron ion pusat, Co" dan Mn', dalam kompleks tersebut adalah spin tinggi. Hal ini berarti ligan tidak menyumbang banyak terhadap kekuatan medan ligan. Konfigurasi spin tinggi menjawab lemahnya intensitas transisi elektron MLCT pada masing-masing kompleks."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1997
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Windri Handayani
"Biosintesis nanopartikel perak dengan memanfaatkan tumbuhan tropis untuk sintesis nanomaterial yang ramah lingkungan berpotensi untuk dikembangkan. Tumbuhan diketahui memiliki kemampuan untuk mereduksi ion perak menjadi partikel perak berukuran < 100 nm. Nanopartikel perak memiliki potensi untuk diaplikasikan sebagai indikator untuk mendeteksi keberadaan logam berat. Selama ini, deteksi dan pengukuran logam berat yang mencemari lingkungan membutuhkan waktu, serta peralatan dan biaya analisis yang tidak murah. Penelitian ini memanfaatkan 8 jenis tumbuhan, terutama yang terdapat di daerah tropis, sebagai agen biosintesis untuk memperoleh nanopartikel perak. Kedelapan tumbuhan tersebut ialah Azadiracta indica A. Juss (Mimba), Centella asiatica (L.) Urban (pegagan), Cerbera manghas L. (Bintaro), Dillenia indica L. (Dillenia), Diospyros blancoi A. DC. (Bisbul), Murraya paniculata (L.) Jack (Kemuning), Pometia pinnata J. R.Forst & G. Forst (Matoa), dan Phalleria macrocarpa (Scheff.) Boerl. (Mahkota dewa). Dilakukan beberapa variasi proses berupa penggunaan air ebusan dari daun segar dan juga kering, rasio volume air rebusan daun dengan AgNO3. Karakterisasi hasil biosintesis dilakukan dengan spektrofotometer UV-Vis. Pengujian senyawa metabolit sekunder secara kualitatif juga dilakukan untuk mendeteksi keberadaan kelompok senyawa alkaloid, fenol, saponin, terpenoid, dan flavanoid pada tumbuhan yang digunakan. Analisis spektrum UV-Vis dari hasil biosintesis diperoleh 7 jenis tumbuhan menunjukkan diperoleh spektrum UV-Vis dikisaran 400-450 nm yang merupakan spektrum UV-Vis dari nanopartikel perak. Selanjutnya, nanopartikel perak hasil biosintesis menggunakan air rebusan daun Diospyros blancoi (Bisbul) dimodifikasi dengan ligan polivinil alkohol (PVA) dan L-sisteina menjadi larutan indikator. Waktu pencampuran dan konsentrasi ligan dengan nanopartikel perak divariasikan. Larutan indikator tersebut diujikan terhadap larutan ion-ion logam Cu2+, Hg2+, Pb2+, Mn2+, dan Zn2+ pada beberapa konsentrasi. Hasil yang diperoleh menunjukkan pengujian indikator tertentu menghasilkan perubahan warna pada deteksi Cu2+, Zn2+, dan Hg2+ pada kadar 1000 ppm. Hasil yang diperoleh menunjukkan adanya kecenderungan sensitifitas dan selektifitas dari larutan indikator terhadap keberadaan ketiga ion logam tersebut.

Tropical plants have high potential for environmentally friendly silver nanoparticle synthesis for many application in nanotechnology. Plants are known to have the ability for silver ion reduction resulting in silver particles sizes < 100 nm. These days, the detection and measurement of heavy metals pollution in an environment requires time, costly equipment, and labored process. This studies tried to obtain silver nanoparticles derived from biological method synthesis using tropical plants and application of the silver nanoparticles as colorimetric indicator. In this study, eight species of plants, mainly located in the tropical region, were used as biosynthetic agents to obtain silver nanoparticles. Theese plants including Azadirachta indica A. Juss (Neem), Centella asiatica (L.) Urban (Pennywort), Cerbera manghas L. (Sea mango), Dillenia indica L. (Elephant apple), Diospyros blancoi A. DC. (Velvet apple), Murraya paniculata (L.) Jack (Orange jasmine), Pometia pinnata J. R. Forst & G. Forst (Matoa), and Phalleria macrocarpa (Scheff.) Boerl. (the God's crown). The biosynthesis process of silver nanoparticles were conducted by boiling the fresh or dried leaves, then reacted with certain volume ratio of AgNO3. Silver nanoparticles were confirmed and characterized from the UV-Vis spectral result. The presence of plant's secondary metabolites gourps such as alkaloids, phenols, saponins, terpenoids, and flavonoids were also tested from the leaves. UV-Vis spectral analysis showed that silver nanoparticles are formed in seven plant species. Further more, silver nanoparticles obtained from biosynthesis using Diospyros blancoi (Velvet apple) leaves broth was modified into indicator solution. The indicator was made by adding ligand polyvinyl alcohol (PVA) and also L-cysteine with silver nanoparticles. The indicator used to detect the presence of Cu2+, Hg2+, Pb2+, Mn2+, dan Zn2+ kations. The testing result of certain modified indicator indicate sensitivity and selectivity to the presence of Cu2 +, Zn2 + and Hg2+ metal ions at 1000 ppm."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
T29963
UI - Tesis Open  Universitas Indonesia Library
cover
Dasriah
"ABSTRAK
Ligan jenis feroin sangat menarik untuk dikaji terutama karena kemampuan ligan ini untuk membentuk kompleks dengan logam yang mempunyai bilangan oksidasi rendah. Salah satu ligan jenis ini adalah 3-(2-piridil)-5,6-difenil-1,2,4-triazin (PDT).
Dalam penelitian ini dicoba kembali pekerjaan peneliti terdahulu yaitu penentuan stoikiometri kompleks Fe(II)-PDT dan Co(II)-PDT dan dilanjutkan
dengan ekstraksi logam besi(II) dan kobalt(l1) dengan cara pengkompleksan terlebih dahulu. Metode ekstraksi yang digunakan adalah ekstraksi pelarut dengan rnenggunakan dua pelarut yang tak campur.
Ekstraksi kompleks logam besi(II)-PDT dan kobalt(1I)-PDT masing-masing pertama kali dilakukan pada berbagai nilai pH untuk memperoleh kondisi optimumnya. Selanjutnya dilakukan ekstraksi masing-masing logam pada pH optimumnya. Penentuan jumlah logam yang terekstrak dilakukan dengan alat spektrofotometri ultra ungu-tampak pada panjang gelombang maksimumnya.
Selain itu juga dilakukan ekstraksi secara simultan, kedua logam berada dalam satu larutan dan konsentrasi tertentu. Pemisahan dilakukan dengan menambahkan padatan NaCN kedalam fasa organik. Pengukuran dilakukan
dua kali, sebelum dan sesudah penambahan NaCN. Pengukuran pertama pada panjang gelombang 500 nm yaitu hagi kompleks Co(PDT)32+ yang masih tercampur dengan kompleks Fe(PDT)32+ dan pengukuran kedua pada panjang
gelombang 500 nm (bagi kompleks Co(PDT)3 2+ ) dan 552 nm (bagi kompleks Fe(PDT) 3 2+ ) . Nilai serapan pertama adalah nilai serapan bagi kompleks Co(PDT) 3 2+, nilai serapan akhir adalah bagi kompleks Fe(PFT)32+
Hasil penelitian ini menunjukkan hahwa kompleks besi (II)-PDT dan kobalt(I1)-PDT mempunvai stoikiometri 1 : 3, yaitu Fe(PDT)3 2+ dan
Co(PDT) 3 2+. Kondisi pH optimum bagi ekstraksi Fe(II) pada pH 5,0 dengan
°/oE = 87,06 dan 7,0 dengan %E = 76,30 bagi ekstraksi Co(II). Kondisi pH
optimum bagi ekstraksi kedua logam secara simultan yaitu pada pH 5,0 dengan
hasil ekstraksi dalam bentuk %E adalah 82,43 bagi Fe(II) dan 72,15 bagi
Co(I1) dan pH 7,0 dengan basil 68.48 % bagi Fe(Il) dan 80,07 % bag] Co(II)."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1996
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmawati Kusumastuti Roosadiono
"Pentingnya ion logam dalam kehidupan organlsme mengalami
peningkatan dalam beberapa tahun terakhir dan telah menghasilkan
pertumbuhan yang cepat dalam bidang kimia bioanorganlk. Asam amino
mempakan salah satu senyawa penting bag! makhluk hidup dan turut
berperan dalam metabolisme dan transpor Ion logam. Kation logam blasanya
berkoordinasi dengan asam amino melalui atom donor yang balk, yaitu N, 0
atau S, yang merupakan dasar pengambilan dan transpor kation logam
dalam tubuh. Penelitian tentang kompleks Ni (II) dengan asam amino
diharapkan dapat mewakili studi tentang nikel dalam sistem biomolekul.
Pada penelitian ini dilakukan pembuatan kompleks Ni(ll)-Asam amino,
dengan asam amino glisin, asam glutamat dan lisin. Kompleks yang
terbentuk dikarakterisasi menggunakan spektrofotometer UV-Vis dan FTIR,
;
kemudian dilakukan penentuan stoikiometri kompleks, uji kelinieran, ,
penentuan tetapan kondisional kompleks dan pengaruh pH terhadap
spektrum kompleks. Transisi elektronik ligan glisin" tegadi pada A = 214.4
nm, asam glutamat" pada A = 217.6 nm dan llsin'pada A = 215.6 nm. Transisi
eiektrpnik kompleks memiliki tiga puncak serapan. Untuk kompleks Ni(glisinat)3" Ai = 598,8 nm; A2= 362,4 nm; A3= 302,0 nm, untuk kompleks
Ni(glutamat)3' Ai =629,2 nm; A2= 389,6 nm; A3 = 301,6 nm dan untuk
kompleks Ni(llslnat)3' Ai = 598,8 nm; A2= 362,0 nm; A3= 302,0 nm. Tiga pita
absorbs! menunjukkan transisi berpusat pada logam, yaitu ^A2g-»^2g (F) (Ai),
3A2g ^^ig(F) (A2). dan %g ->^ig(P) (A3). Vibrasi Ni-N dan NI-0 kompleks
Nl(aa)' muncul pada daerah frekuensl rendah, yaitu dibawah 600 cm \
Vibrasi Ni-N muncul pada daerah 220-210 cm'^ dan vibrasi Ni-0 muncul pada
daerah 240-225 cm'\ Logam Np membentuk kompleks dengan 3 ligan, baik
pada glisin, asam glutamat maupun lisin. Harga log K" kompleks
[Ni(glisinat)3]' = 10.77, log K" kompleks [Ni(glutamat)3]' = 10.44 dan log K'
kompleks [Ni(lisinat)3]" = 10.66. Spektrum kompleks menunjukkan
peningkatan absorbansi dengan kondisi pH semakin basa."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2003
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizqa Dianti Zahra
"Berdasarkan data dari Direktorat Jenderal Minyak Dan Gas Bumi tahun 2021, penjualan BBM mengalami peningkatan sebesar 6,87% dari tahun 2020. Dengan meningkatnya pemakaian bahan bakar minyak mengakibatkan meningkatnya bahan pencemar. Oleh karena itu, perlu dikembangkan energi alternatif terbarukan dan bersifat ramah lingkungan. Salah satunya, biodiesel yang memiliki kemampuan untuk menggantikan diesel konvensional sebagai bahan bakar pengganti yang lebih ramah lingkungan. Biodiesel yang berasal dari minyak jelantah dapat membantu menyelesaikan 3 masalah, yaitu masalah pangan, polusi dan energi. Digunakannya reaksi transesterifikasi untuk menurunkan viskositas dan bilangan asam dari minyak jelantah dengan katalis basa heterogen, yaitu AEMOFs. AEMOFs memiliki keunggulan harga rendah, toksisitas rendah, proses sintesis yang mudah, porositas tahan lama, termostabilitas tinggi, framework yang teratur, dan ramah lingkungan. Sintesis AEMOFs menggunakan hidrotermal, karakterisasi FTIR, XRD, SAA, dan SEM, dan reaksi transesterifikasi minyak jelantah dengan katalis AEMOFs. Hasil sintesis AEMOFs diperoleh dan dikarakterisasi FTIR menunjukkan pergeseran puncak absorpsi gugus karboksil (COO-), XRD menunjukkan rata-rata ukuran kristal 16,14 nm (Mg), 20,37 nm (Ca), 46,58 nm (Sr), dan 104,76 nm (Ba), SAA menunjukan kurva isoterm berupa material berpori dan analisa SEM-EDX komposisi logam 1,57% (Mg), 12,25% (Ca), 20,96% (Sr), dan 55,11% (Ba). Sintesis AEMOFs menggunakan metode hidrotermal telah dilakukan dan penggunaan katalis AEMOFs Ba-BDC dalam reaksi transesterifikasi memiliki sifat kebasaan paling besar dengan menghasilkan persen konversi asam lemak yang terkandung dalam minyak jelantah tertinggi.

Based on data from the Directorate General of Oil and Gas for 2021, fuel sales have increased by 6.87% from 2020. The increasing use of fuel oil causes an increase in pollutant substances. Therefore, it is necessary to develop alternative energy that is renewable and environmentally friendly. One of them is biodiesel, which can replace conventional diesel as a substitute fuel that is more environmentally friendly. Biodiesel derived from used cooking oil can help solve three problems: food, pollution, and energy. The transesterification reaction was used to reduce the viscosity and acid number of used cooking oil using a heterogeneous base catalyst, called AEMOFs. AEMOFs have the advantages of low price, low toxicity, an easy synthesis process, long-lasting porosity, high thermostability, a regular framework, and environmental friendliness. Synthesis of AEMOFs using hydrothermal, FTIR, XRD, SAA, and SEM characterization, and transesterification reaction of used cooking oil with AEMOF catalyst The results of the synthesis of AEMOFs obtained and characterized FTIR showed a shift in the absorption peak of the carboxyl group (COO-), XRD showed an average crystal size of 16.14 nm (Mg), 20.37 nm (Ca), 46.58 nm (Sr), and 104.76 nm (Ba), SAA showed isothermal curves in the form of porous materials, and SEM-EDX analysis of metal composition showed 1.57% (Mg), 12.25% (Ca), 20.96% (Sr), and 55.11% (Ba). AEMOFs synthesize using hydrothermal methods, and the use of AEMOFs Ba-BDC catalyst in the transesterification reaction has the greatest basicity by producing the highest conversion percentage of fatty acids contained in used cooking oil."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yulian Syahputri
"Ligan para-di-2-(1-methyl-3-pyridyl-4,5-dihydro-1H-pyrazol-5-yl)benzena telah berhasil disintesis menggunakan metode kondensasi Claisen-Schmidt. Hasil yang diperoleh berupa padatan kuning sebesar 44,1% dan dikarakterisasi menggunakan spektrofotometer UV-Vis, spektrofotometer inframerah dan spektrometer NMR. Aplikasi ligan ini sebagai fluorosensor untuk ion logam Cd2+ dan Pb2+ dilakukan dengan menggunakan spektrofluorometer. Hasil studi fluoresensi menunjukkan bahwa ligan mempunyai intensitas fluoresensi yang kuat. Hal ini didukung oleh nilai absorptivitas molar (ε) yang besar.
Studi spektroskopi UV-Vis pada penambahan ion Cd2+ dan Pb2+ menunjukkan munculnya puncak baru pada daerah panjang gelombang 290 nm. Hal ini menunjukkan bahwa terbentuk kompleks antara ion logam (Cd2+ dan Pb2+) dengan ligan para-di-2-(1-methyl-3-pyridyl-4,5-dihydro-1H-pyrazol-5-yl)benzena. Studi aplikasi fluorosensor menunjukkan bahwa ligan ini dapat dijadikan fluorosensor tipe off-on untuk ion Cd2+ karena penambahan ion ini menyebabkan peningkatan intensitas fluoresensi dan fluorosensor tipe on-off untuk ion Pb2+ karena penambahan ion ini menyebabkan penurunan intensitas fluoresensi.
Hasil studi selektvitas fluorosensor menunjukkan bahwa ligan para-di-2-(1-methyl-3-pyridyl-4,5-dihydro-1H-pyrazol-5-yl)benzena merupakan fluorosensor yang selektif terhadap penambahan ion Cd2+ pada panjang gelombang maksimum (λmaks) 450 nm, dan selektif terhadap penambahan ion Pb2+ pada panjang gelombang maksimum (λmaks) 430 nm.

Ligand para-di-2-(1-methyl-3-pyridyl-4,5-dihydro-1H-pyrazol-5-yl)benzene has been synthesized using Claisen-Schmidt condensation method. The solid yellow precipitate was 44,1% and characterized by UV-Visible spectrophotometer, Infrared spectrophotometer and NMR spectrometer. The application of this ligand as fluorosensor for Cd2+ and Pb2+ metal ions was studied by using spectrofluorometer. Fluorescence studies indicate that the ligand has a strong fluorescence intensity.
This is supported by a large molar absorptivity (ε) value. UV-Vis spectroscopy studies on the addition of Cd2+ and Pb2+ ions showed the emergence of a new peak at 290 nm wavelength region. This indicates that the complexes formed between metal ions (Cd2+ and Pb2+) with para-di-2-(1-methyl-3-pyridyl-4,5-dihydro-1H-pyrazol-5-yl)benzene ligand. Application fluorosensor studies showed that these ligands can be used as off-on type fluorosensor for Cd2+ ions due to the addition of these ions causes an enhanced in fluorescence intensity and fluorosensor on-off type for Pb2+ ions due to the addition of these ions causes a quenched in fluorescence intensity.
The results of the study of fluorosensor selectivity showed that the ligand para-di-2-(1-methyl-3-pyridyl-4,5-dihydro-1H-pyrazol-5-yl)benzene is fluorosensor selective addition of Cd2+ ions at the maximum wavelength (λmax) 450 nm, and the selective addition of Pb2+ ions at the maximum wavelength (λmax) 430 nm.
"
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T42242
UI - Tesis Membership  Universitas Indonesia Library
cover
Yenita
"ABSTRAK
Senyawa kompleks besi(II) dengan ligan 1,2,4-triazol dan anion ClO4 serta BF4 telah berhasil disintesis ulang dengan menggunakan variasi pelarut air dan etanol.
Pada temperatur ruang, senyawa kompleks yang dihasilkan dengan anion ClO4
-
berwarna pink dan BF4
- berwarna pink-ungu yang keduanya menunjukkan
keadaan spin rendah. Rumus kimia senyawa kompleks yang dihasilkan dari
pelarut air adalah [Fe(Htrz)2(trz)](ClO4) dan [Fe(Htrz)2(trz)](BF4) (Htrz = 1,2,4-
triazol; trz- = ion triazolat). Aplikasi kompleks tersebut pada permukaan keramik
dan gelas dilakukan untuk membuat display atau model alat peraga fenomena spin
crossover (SCO) melalui pengamatan efek termokromik. Dengan display tersebut
semua senyawa kompleks menunjukkan efek histeresis, yaitu jalur transisi ketika
dipanaskan berbeda dengan ketika didinginkan. Lebar histeresis kompleks
[Fe(Htrz)2(trz)](ClO4) adalah 40 K (T½↑ = 392 K dan T½↓ = 352 K) sedangkan
untuk kompleks [Fe(Htrz)2 (trz) ](BF4) adalah 38 K (T½↑ = 375 K dan T½↓ = 337
K). Aplikasi pada permukaan keramik dan gelas dapat dijadikan sensor suhu pada
display model atau alat peraga sederhana untuk pengenalan senyawa kompleks
SCO.

Abstract
Iron(II) complexes with 1,2,4-triazole ligand and different anions, ClO4
- and BF4
-,
have been resynthesized using aqueous and ethanol systems. At room temperature
the colour of ClO4
- complex is pink and BF4
- complexes are pink-violet , this
represents an iron(II) in low spin state. The chemical formula of iron(II)
complexes are [Fe(Htrz)2(trz)](ClO4) and [Fe(Htrz)2(trz)](BF4) (Htrz = 1,2,4-
triazole; trz- = triazolate ion) isolated from aqueous systems. The complexes have
been applied on ceramic and glass surfaces to make simple display model of spin
crossover (SCO) phenomena. All complexes showed hysteresis effect, where the
increased temperature transition different from the decreased temperature
transition. The hysteresis width of [Fe(Htrz)2(trz)](ClO4) is 40 K (T½↑ = 392 K
and T½↓ = 352 K) and for [Fe(Htrz)2 (trz) ](BF4) is 38 K (T½↑ = 375 K and T½↓
= 337 K). The application on ceramic and glass surfaces can be use as a
temprature censor model to introducing the SCO phenomena."
Lengkap +
2012
T30770
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3   >>