Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Kresensia Katrin Rianty
Abstrak :
Ibu Kota memiliki peran penting dalam menggambarkan seberapa besar kekuatan politik, kultural, dan ekonomi suatu negara. Apabila Ibu Kota suatu negara memiliki banyak masalah yang tidak terselesaikan, permasalahan tersebut dapat menjadi faktor–faktor yang memengaruhi suatu negara memindahkan Ibu Kotanya. Setelah ditelusuri, terdapat banyak negara yang pernah memindahkan Ibu Kotanya termasuk Indonesia. Tujuan dari penelitian ini adalah untuk membentuk model dan menganalisis faktor–faktor yang memengaruhi negara–negara di dunia memindahkan Ibu Kota dengan data yang mengandung masalah: 1. Outlier, 2. Missing values, 3. Data tak seimbang, 4. Multikolinearitas. Jika data mengandung masalah, maka model yang terbentuk menjadi tidak representatif dan sulit untuk diinterpretasikan. Sehingga diperlukan metode yang dapat digunakan untuk menangani 4 (empat) masalah tersebut, yaitu berturut-turut: 1. Quantile–Based Flooring Capping, 2. K–Nearest Neighbor, 3. Adaptive Synthetic (ADASYN), dan 4. Menerapkan model Least Absolute Shrinkage and Selection Operator (LASSO) pada regresi logistik. Hasilnya menunjukkan bahwa faktor yang memengaruhi suatu negara memindahkan Ibu Kotanya adalah ukuran populasi di Ibu Kota, populasi negara, luas area (km2), Usia Negara, sistem pemerintahan, Income Category, dan Sedangkan faktor yang tidak masuk ke dalam model yaitu Gross Domestic Product (GDP), Logistic Performance Index (LPI) Score, Regulatory Quality Index, dan E–Government Development Index adalah prediktor yang mengalami multikolinearitas, sehingga model LASSO pada regresi logistik berhasil menyusutkan prediktor tersebut menjadi 0. Adapun model akhir dari Least Absolute Shrinkage and Selection Operator (LASSO) pada regresi logistik yang diperoleh adalah g(x) = 0,3399 – 0,8019 POP_CITY + 3,5925 POP_COUNTRY + 0,3406 AREA – 0,0156 AIRPOL + 0,0679 GEI + 0,8351 PS_AVT – 0,5682 GOV_EFFECT – 1,8643 AGE – 0,7043 SYSTEM_A – 1,4408 SYSTEM_B – 0,7036 INCOME_A – 0,5272 INCOME_B – 3,7404 INCOME_C – 0,9489 ARCHIPELAGO. ......The capital city plays an important role in portraying how much political, cultural and economic power a country has. If the capital city has many unresolved problems, these problems can become factors that influence the country to move its capital city. After being traced, there are many countries that have moved their capital cities, including Indonesia. The purpose of this study is to model and analyze the factors that influence countries in the world to move its capital city with data containing problems: 1. Outliers, 2. Missing values, 3. Imbalanced data, 4. Multicollinearity. If the data contains these problems, the model formed becomes unrepresentative and difficult to interpret. Therefore, the methods that can be used to handle these 4 (four) problems, respectively: 1. Quantile-Based Flooring Capping, 2. K-Nearest Neighbor, 3. Adaptive Synthetic (ADASYN), and 4. Applying the Least Absolute Shrinkage and Selection Operator (LASSO) model in logistic regression. The results showed that the factors that influence a country to move its capital city are population size in the capital city, country population, area (km2), air pollution level (mg/m3), Global Entrepreneurship Index (GEI), Political Stability and No Violence/Terrorism Index, Government Effectiveness Index, Country Age, government system, Income Category, and whether a country is an archipelago or not. While the factors that did not enter the model, namely the Gross Domestic Product (GDP), Logistic Performance Index (LPI) Score, Regulatory Quality Index, and E-Government Development Index were predictors that experienced multicollinearity, so the LASSO model in logistic regression successfully shrinks these predictors to 0. The final Least Absolute Shrinkage and Selection Operator (LASSO) model in logistic regression obtained is g(x) = 0,3399 – 0,8019 POP_CITY + 3,5925 POP_COUNTRY + 0,3406 AREA – 0,0156 AIRPOL + 0,0679 GEI + 0,8351 PS_AVT – 0,5682 GOV_EFFECT – 1,8643 AGE – 0,7043 SYSTEM_A – 1,4408 SYSTEM_B – 0,7036 INCOME_A – 0,5272 INCOME_B – 3,740
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Situmeang, Jason Nimrod Joshua
Abstrak :

Penelitian ini bertujuan untuk melakukan pengelompokan varian virus SARS-CoV-2 melalui proses clustering menggunakan metode unsupervised learning. Data yang digunakan adalah sekuens protein SARS-CoV-2 yang diekstraksi fiturnya menggunakan paket Discere dalam bahasa pemrograman Python. Sebanyak 27 fitur dihasilkan dan diseleksi dengan metode seleksi fitur Least Absolute Shrinkage and Selection Operator (LASSO). Metode Elbow digunakan untuk menentukan jumlah cluster yang optimal. Dalam penelitian ini, digunakan metode clustering K-Means dan Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH). Evaluasi hasil clustering dilakukan menggunakan metrik evaluasi Silhouette Score dan Davies-Bouldin Index, serta memperhatikan waktu runtime untuk setiap simulasi. Hasil evaluasi kemudian dibandingkan untuk melihat perbedaan performa antara kedua metode clustering yang digunakan, serta pengaruh seleksi fitur terhadap performa clustering. Hasil terbaik diperoleh pada simulasi dengan metode clustering BIRCH + LASSO, dengan nilai Silhouette Score 0,74186 untuk jumlah cluster k=4 dan 0,73207 untuk k=5. Nilai Davies-Bouldin Index terbaik juga diperoleh pada simulasi tersebut, yaitu 0,42697 untuk k=4 dan 0,37949 untuk k=5. Waktu runtime terbaik tercatat pada simulasi dengan metode K-Means + LASSO, yaitu 0,21551 detik untuk k=4 dan 0,17539 detik untuk k=5. Dapat disimpulkan bahwa metode BIRCH menghasilkan cluster yang lebih baik berdasarkan metrik evaluasi, namun K-Means memberikan proses clustering yang lebih cepat. Seleksi fitur dengan metode LASSO juga membantu meningkatkan performa clustering. ......This study aims to perform clustering of SARS-CoV-2 virus variants using unsupervised learning methods. The data used consists of SARS-CoV-2 protein sequences whose features are extracted using the Discere package in the Python programming language. A total of 27 features are generated and selected using the Least Absolute Shrinkage and Selection Operator (LASSO) feature selection method. The Elbow method is employed to determine the optimal number of clusters for the clustering process. The clustering methods used in this research are K-Means clustering and Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH). The clustering results are evaluated using the Silhouette Score and Davies-Bouldin Index metrics, while also considering the runtime for each simulation. The evaluation results are then compared to examine the performance differences between the two clustering methods and the impact of feature selection on clustering performance. The best Silhouette Score is obtained in the simulation using the BIRCH + LASSO clustering method, with a value of 0.74186 for k=4 and 0.73207 for k=5. The best Davies-Bouldin Index is also achieved in the same simulation, with values of 0.42697 for k=4 and 0.37949 for k=5. The fastest runtime is recorded in the simulation using the K-Means + LASSO method, with a time of 0.21551 seconds for k=4 and 0.17539 seconds for k=5. In conclusion, the BIRCH method yields better clustering results based on the evaluation metrics, while K-Means provides faster clustering processes. The LASSO feature selection method also aids in improving clustering performance.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library