Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Patricius Andri Indhiarto
"Penelitian ini akan membahas mengenai pemodelan penyebaran fasies sedimen laut dalam di salah satu lapangan yang mengandung gas di Cekungan Kutai. Fasies pengendapan di lapangan Y dibagi menjadi 5 yakni Channel Axis, Channel Margin, Levee Overbank, Mass Transport dan Mud. Fasies pengendapan tersebut dibedakan satu dengan yang lain dalam penelitian ini melalui perbedaan cut-off vshale dan pola log GR. Korelasi antar sumur menggunakan ketentuan stratigrafi sikuen dibantu dengan data plot gradien tekanan dan data seismik. Interpretasi data seismik 3D pada interval pemodelan yaitu interval A bertujuan untuk membentuk kerangka pemodelan penyebaran fasies.
Pemodelan penyebaran fasies pada penelitian kali ini menggunakan metode Multi Point Statistic Simulation (MPS). Modul pemodelan MPS dalam software Petrel menyediakan sarana untuk menyertakan berbagai macam input data geologi dan geofisika dalam pemodelan fasies. Data input tersebut antara lain training image, seismik vshale dan data peta medan azimuth. Penelitian ini juga mencoba membandingkan proses pemodelan fasies menggunakan metode MPS dengan salah satu metode stochastic lainnya yakni SIS (Sequential Indicator Simulation).

This study describes about fasies distribution modeling of deepwater deposit in one of gas field at Kutai Basin.The deepwater depositional fasies in Y field can be divided into 5 fasies such as Channel Axis, Channel Margin, Levee Overbank, Mass Transport and Mud. Vshale cut-off and GR log pattern are used for dividing one depositional fasies to other depositional facies. Sequence stratigraphy concept is applied on well to well correlation supported with other data like pressure gradien plot and seismic section. 3D seismic horizon interpretation at A interval aim to build model framework for fasies distribution.
This research utilizes Multi Point Statistic Simulation (MPS) method to distribute the fasies. The MPS modeling modul in Petrel provides some options to use geology and geophysics data as modeling input. Thoose input data are training image, vshale seismic cube and azimuth field map. The study also tried to compare the facies modeling process using the MPS method with one of the other stochastic methods namely SIS ( Sequential Indicator Simulation ).
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T44503
UI - Tesis Membership  Universitas Indonesia Library
cover
Rafi
"Fluida dari sumur laut dalam Merakes yang mengalir kurang lebih 48 km dari kedalaman air 1600 m di bawah permukaan laut menuju Fasilitas Pengolahan Terapung Migas akan mengalami perubahan tekanan suhu selama proses pengaliran. Salah satu resiko fluida yang mengalir di tekanan tinggi dan suhu rendah adalah terbentuk nya hidrat. Hidrat akan terbentuk jika gas hidrokarbon bercampur dengan air di teananan tinggi dan suhu rendah. Dalam laporan Praktik Keinsinyuran ini, Penulis akan menjelaskan pencegahan terbentuknya hidrat dengan injeksi inhibitor kimia termodinamika mengunakan MEG dan MeOH. Injeksi MEG berkelanjutan dilakukan selama operasi kondisi stabil, sementara MeOH dapat menghambat hidrat selama operasi start-up dan restart-up. Jika hidrat telah terbentuk, remediasi hidrat harus dilakukan untuk mengurangi penyumbatan pipa. Depresurisasi akan digunakan untuk memisahkan hidrat yang terbentuk. Manajemen hidrat di lapangan laut dalam Merakes ini dijelaskan secara lebih rinci dalam Laporan Kerja Praktik Keinsinyuran ini.

Fluid from Merakes deep water wells which flows approximately 48 km from 1600 m water depth below mean sea level to oil and gas Floating Processing Facility will experience changes in pressure and temperature during the flowing process. One of the risks of fluid flowing at high pressure and low temperature is the hydrate formation. Hydrate will form if hydrocarbon gas mixes with water at high pressure and low temperature. In this Engineering Practice report, the author will explain the hydrate formation prevention by injection of thermodynamic chemical inhibitors using MEG and MeOH. Continuous MEG injection is performed during steady state operation, while MeOH can inhibit hydrate during start-up and restart-up operation. If hydrate has already been formed, hydrate remediation must be performed to reduce the pipe blockage. Depressurization will be used to remediate the hydrate which has already been formed. Hydrate management in the Merakes deep water field is explained more details in this Engineering Practical Work Report."
Depok: Fakultas Teknik Universitas Indonesia, 2023
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Antonius Yunianto
"Pengembangan lapangan gas greenfield laut dalam memiliki tantangan teknis dan ekonomis, terkait dengan teknologi dan fasilitas produksi yang baru untuk dapat memproduksikan gas pada kondisi lingkungan yang ekstrem. Dalam penelitian ini dilakukan analisa secara teknis dan ekonomis terhadap pengembangan lapangan gas greenfield laut dalam dengan metode pengembangan sistem produksi bawah laut. Analisa teknis meliputi analisa flow assurance, khususnya strategi manajemen hidrat untuk menjamin keberlangsungan aliran gas dari sumur bawah laut hingga ke titik jual. Dari analisa teknis didapatkan konfigurasi pencegahan dan penghilangan hidrat. Analisa ekonomi mencakup perhitungan biaya investasi pada setiap alternatif konfigurasi yang memenuhi kriteria teknis, kemudian dilanjutkan dengan perhitungan keekonomian berdasarkan skema PSC yang berlaku di Indonesia. Dengan harga gas ekspor dan domestik sebesar 11/MMBTU dan 7/MMBTU, konfigurasi MEG dengan teknologi MRU adalah yang paling optimum karena memberikan IRR dan NPV yang terbesar yaitu sebesar 14,8 dan 794,5 juta US . Berdasarkan hasil sensitivitas keekonomian, CAPEX, harga gas ekspor dan hasil bagi untuk kontraktor memberikan pengaruh terbesar untuk IRR dan NPV, sedangkan OPEX memberikan pengaruh yang terkecil. Untuk mendapatkan minimum IRR sebesar 18 yang dipersyaratkan oleh regulator, CAPEX perlu ditekan sebesar 10 dan dengan besaran hasil bagi untuk kontraktor minimum sebesar 50.

Deepwater gas greenfield development has technical and economic challenges, related to new technology and production facilities and that can be used for producing gas in the extreme ambient conditions. Technical analysis includes flow assurance analysis, selection of hydrate inhibitors MEG MeOH and determine minimum injection flow rate of hydrate inhibitors and hydrate remediation strategy. Economic analysis includes the calculation of investment cost on each configuration that meets the technical criteria above. Then continue with calculation of economic parameter based on applicable Indonesia PSC scheme. With export gas and domestic gas price 11 MMBTU and 7 MMBTU, MEG with MRU technology is the most optimum because it provides the largest IRR 14.8 and NPV 794.5 million US . Based on IRR and NPV sensitivity analysis CAPEX, export gas price and contractor split have significant effect to IRR and NPV otherwise OPEX has the most un significant effect to IRR and NPV. To obtain the minimum IRR of 18 required by the regulator, CAPEX needs to be reduced by 10 and by changing the contractor split by a minimum of 50 for contractor.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48252
UI - Tesis Membership  Universitas Indonesia Library
cover
Simaremare, Dedy Rintho I.
"Pencarian minyak dan gas bumi di laut dalam bukanlah hal mudah, karena membutuhkan teknologi, biaya yang mahal serta resiko yang tinggi. Teknologi laut dalam masih relatif muda dibandingkan dengan teknologi struktural lainnya dan hingga sekarang terus mengalami perkembangan dan penyempurnaan. Salah satunya adalah Steel Catenary Riser (SCR) dan SCR pertama dibangun pada tahun 1994 oleh Shell. Riser adalah sarana transportasi untuk mengalirkan fluida/gas dari fasilitas dibawah laut ke fasilitas di permukaan laut atau sebaliknya. Steel Catenary Riser (SCR) adalah riser yang konfigurasinya berbentuk catenari oleh karena berat riser itu sendiri dan salah satu ujungnya tergantung pada floater sedangkan ujung lainnya terletak di dasar lautan. Dalam menganalisa desain riser ini dilakukan beberapa simulasi dimana gelombang dan arus datang dari beberapa arah dan terjadi pergeseran dari FPSO. FPSO diasumsikan mengalami sway sebesar _ 50 m dan heave sebesar _ 5 m. Analisa akan menggunakan program Orcaflex. Dari hasil analisa dan simulasi didapatkan bahwa tegangan terbesar terjadi pada SCR 3 denga arah arus dan gelombang 180o dan FPSO sway -50m. Akan tetapi nilai tersebut masih jauh dibawah tegangan ijin dari SCR tersebut.

Deepwater exploration for oil and gas is not an easy things to do, because high technology needed, expensive and high risk as well. Deep water technology is quite new compare to other structural technology which is until now still under developing and perfection. One of deep water technology is called Steel Catenary Riser (SCR). The first SCR was built in 1994 by Shell. Riser is a conductor pipe conneting floater on the surface and wellhead on the subsea. Steel Catenary Riser is a riser which have catenary configuration because one of the end attached to floater and the other end anchored on the sea bed. SCR design will be analyzed by conducting some simulation where wave and current direction come from diffrent angle and FPSO having sway _ 50 m (asumption) and heave _ 5 m (assumption). The tool used to do simulation is Orcaflex Program. Result of simulation shows that the higher strees occur on SCR 3 where direction of wave and current come in from 180o angle and when FPSO sway far from anchor point on the seabed. However, the strees is accepted."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S50531
UI - Skripsi Open  Universitas Indonesia Library
cover
Manullang, Corry Yanti
"Mikroplastik adalah potongan plastik kecil dengan panjang terpanjang kurang dari 5 mm yang muncul di lingkungan sebagai akibat dari polusi plastik. Ukuran mikroplastik ini sangat kecil sehingga memungkinkan polutan ini mudah tertranspor bersama arus laut. Mikroplastik memiliki ukuran, warna dan bentuk yang mirip dengan makanan alami biota laut zooplankton sehingga dapat disalahartikan sebagai makanan. Oleh karena itu, pengetahuan terkait distribusi dan nasib partikel mikroplastik dalam suatu perairan penting dilakukan untuk memahami resikonya terdapat keanekaragaman biota yang ada dalam perairan.
Sirkulasi laut di Indonesia dipengaruhi oleh dua sistem arus utama, yaitu Arus Monsun Indonesia (ARMONDO) dan Arus Lintas Indonesia (ARLINDO). ARLINDO merupakan lintasan arus samudra yang membawa massa air dalam skala besar dari Samudra Pasifik ke Samudra Hindia dan juga memiliki peranan penting dalam iklim global. Berbeda halnya dengan ARMONDO yang merupakan pola arus permukaan yang dibangkitkan oleh angin musim (Monsun), aliran utama massa air ARLINDO terjadi pada lapisan termoklin yang disebabkan oleh perbedaan karakteristik temperatur dan salinitas lautan. Jalur utama ARLINDO adalah Selat Makasar yang mengalirkan sekitar 80% dari total ARLINDO. Massa air Samudra Pasifik bagian utara dan selatan memasuki laut Indonesia melalui ambang Sulawesi, kemudian melintasi Laut Sulawesi dan Selat Makassar. Selanjutnya, sebagian air langsung keluar ke Samudera Hindia melalui Selat Lombok dan Selat Alas, sedangkan sebagian besar mengalir ke Laut Banda dan menyatu dengan jalur ARLINDO bagian timur sebelum keluar menuju Samudera Hindia.
Sejak pertengahan tahun 1980-an, pengukuran flux massa air, suhu dan salinitas telah banyak dilakukan di jalur ARLINDO. Namun demikian, studi pencemaran laut di kawasan ini masih belum dijelajahi dan belum diketahui secara detail. Sementara itu, polutan seperti halnya mikroplastik dapat dengan mudah tertranspor bersama arus laut. Tujuan umum dari penelitian disertasi ini adalah memenuhi kesenjangan data dan informasi terkait pencemaran mikroplastik di kawasan laut dalam jalur ARLINDO. Disertasi ini terdiri dari 5 bab, meliputi Bab Pengantar Paripurna, 3 Bab mengenai penelitian inti yang dilakukan dalam disertasi ini dan Bab Diskusi paripurna yang mengelaborasi temuan-temuan dalam penelitian ini dan memuat rekomendasi penelitian di masa yang akan datang.
Bab pertama disertasi ini, berisi pendahuluan terkait latar belakang dilakukannya disertasi ini. Dalam bab ini dipaparkan terkait polusi mikroplastik, distribusi mikroplastik, penelitian-penelitian mikroplastik di kawasan laut dalam, kondisi eksisting penelitian mikroplastik di Indonesia saat ini dan kesenjangan penelitian mikroplastik di Indonesia. Dalam bab ini juga dipaparkan terkait research gaps yang dicapai melalui penelitian disertasi ini serta nilai kebaruan penelitian ini dalam bidang penelitian mikroplastik.
Bab kedua disertasi ini memuat tentang informasi distribusi vertikal mikroplastik di kolom air kawasan laut dalam jalur ARLINDO. Kajian ini membahas sebaran mikroplastik di kolom air laut dalam secara detail yang sangat penting dalam menentukan nasib dan pengangkutan mikroplastik di perairan Indonesia yang bermuara di Samudera Hindia. Sampel kolom air dikumpulkan dari 11 stasiun, meliputi sepanjang Selat Makassar, Selat Alas dan Selat Lombok. Pengambilan sampel air dari kolom air dan pengukuran profil vertikal parameter fisik dilakukan menggunakan carousel rosette water sampler yang yang dipasang dengan alat Sea-Bird SBE 911+ conductivity-temperature-depth (CTD) hingga kedalaman 2450 m. Sampel kolom air dikumpulkan dari 8 hingga 10 kedalaman meliputi lapisan dekat permukaan (~5 m); kedalaman klorofil maksimum; lapisan termoklin (atas, tengah dan bawah); kedalaman oksigen terlarut minimum (DO-Min); dan kedalaman dekat dasar. Tingkat kedalaman pengambilan sampel bervariasi berdasarkan kondisi perairan. Untuk kedalaman perairan melebihi 1000 m pengambilan sampel tambahan dilakukan pada kedalaman 500 m, 750m, 1000 m, 1500 m, dan 2000 m. Proses ekstraksi mikroplastik dari sampel air dilakukan dengan prosedur WPO (wet peroxide oxidation) menggunakan larutan hidrogen peroksida (H2O2) 30%. Proses pengambilan sampel hingga proses ekstraksi mikroplastik dilakukan secara teliti untuk menghindari adanya kontaminasi mikroplastik dari udara maupun peralatan penelitian. Uji polimer partikel mikroplastik dilakukan dengan Raman spectroscopy. Sebanyak 924 partikel mikroplastik dengan rata-rata kelimpahan 1,062±0,646 n/L ditemukan di kolom air laut dalam jalur ARLINDO. Mayoritas bentuk plastik yang ditemukan adalah fiber. Jenis polimer yang paling dominan ditemukan adalah polimetil vinil eter- asam ko-maleat (PVEMA) dan poliester (PES). Konsentrasi mikroplastik paling banyak ditemukan di lapisan termoklin dan lapisan di bawah termoklin. Studi ini mengungkapkan bahwa suhu air dan kepadatan air merupakan faktor parameter fisika perairan yang paling signifikan yang berkorelasi dengan konsentrasi mikroplastik di kolom perairan laut dalam jalur ARLINDO. Selain itu, massa air pada lapisan termoklin dan lapisan di bawah termoklin memiliki salinitas >33‰, hal ini berkorelasi dengan karakteristik massa air perairan Pasifik Utara yang masuk ke perairan Selat Makassar. Hal ini menguatkan hipotesis bahwa aliran massa air dari Samudera Pasifik ke Samudera Hindia melalui perairan Indonesia turut membawa mikroplastik ke wilayah ini.
Bab 3 disertasi ini memberikan temuan awal mengenai konsumsi mikroplastik oleh kopepoda di jalur ARLINDO. Sampel zooplankton dikumpulkan dari 10 stasiun dengan cara menarik jaring secara vertikal dari kedalaman 300 m ke permukaan menggunakan jaring plankton NORPAC dengan ukuran mata jaring 200 µm. Sampel diawetkan dengan larutan etanol 90%. Di laboratorium, kopepoda disortir dan diklasifikasikan ke dalam tiga kategori ukuran berbeda untuk mengetahui perbedaan penelanan mikroplastik dalam berbagai ukuran biota zooplankton. 87% partikel yang ditemukan berbentuk fiber. Tiga jenis polimer dominan yang diidentifikasi adalah polivinil butiral (PVB), polimetil vinil eter- asam ko-maleat (PVEMA) dan Poliester (PES). Tingkat penyerapan mikroplastik pada masing-masing kelompok ukuran kopepoda adalah 0,016 n/ind untuk kopepoda ukuran 200-500 µm; 0,023 n/ind untuk kopepoda ukuran 500-1000 µm dan 0,028 n/ind untuk kopepoda ukuran 1000-2000 µm. Tidak terdapat perbedaan yang signifikan antara konsentrasi ketiga kelompok kelas kopepoda sepanjang jalur ARLINDO (p>0,05). Namun konsentrasi mikroplastik ditemukan berbanding lurus secara positif dengan ukuran kopepoda. Kopepoda memiliki penting dampak mendistribusikan dan mentransfer energi dalam ekosistem dan merupakan komponen rantai makanan yang penting karena berfungsi sebagai konsumen utama bagi banyak organisme akuatik. Oleh karena itu, studi ini memberikan pengetahuan dasar yang fundamental untuk penilaian risiko ekologi mikroplastik lebih lanjut di jalur ARLINDO.
Bab 4 disertasi ini menyajikan informasi awal terkait distribusi mikroplastik di sedimen laut dalam di jalur ARLINDO, yaitu Selat Makassar. Pengambilan sedimen laut dalam dilakukan 7 stasiun yang mewakili habitat laut dalam yang berbeda dengan kedalaman mulai dari 348,2 hingga 1624 m. Tujuh stasiun yang dipilih mewakili tiga lokasi berbeda. Sampel sedimen dikumpulkan pada kedalaman yang bervariasi di setiap lokasi untuk menilai variasi akumulasi mikroplastik di berbagai kedalaman laut. Hasil penelitian ini menunjukkan bahwa polusi mikroplastik telah menyebar ke seluruh lautan di dunia hingga ke laut dalam. Jumlah mikroplastik berkisar antara antara 143 hingga 520 n/Kg sedimen kering. Meskipun penelitian ini sangat terbatas karena hanya sedikit sampel yang dapat mewakili seluruh dasar laut dalam di jalur ARLINDO, namun pengetahuan awal akumulasi mikroplastik ini sangat penting untuk memprediksi distribusi mikroplastik di laut dalam. Secara keseluruhan, jumlah mikroplastik di sedimen meningkat seiring bertambahnya kedalaman dasar laut mengindikasikan potensi laut dalam untuk mengakumulasi mikroplastik.
Bab 5 disertasi ini merupakan diskusi paripurna keseluruhan penelitian yang dilakukan dalam disertasi ini. Dalam bab 2, 3 dan 4 telah disajikan masing-masing komponen penelitian disertasi secara rinci. Maka bab 5 ini bertujuan untuk mengelaborasi temuan-temuan dalam penelitian disertasi ini dan menyoroti penelitian di masa yang akan datang di kawasan laut dalam, secara khusus di kawasan laut dalam jalur ARLINDO. Dalam bab ini diungkapkan kebaruan disertasi sebagai penelitian pertama yang mengungkapkan distribusi vertikal mikroplastik secara detail di kawasan jalur utama ARLINDO. Konsentrasi mikroplastik di kolom perairan di sepanjang jalur ARLINDO ditemukan paling tinggi di lapisan termoklin dan lapisan di bawah termoklin. Parameter fisika perairan meliputi suhu dan densitas air memiliki pengaruh yang signifikan terdapat distribusi vertikal mikroplastik di dalam kolom air. Penelitian ini juga melaporkan untuk pertama kalinya informasi penelanan mikroplastik oleh plantonik kopepoda di Indonesia. Meskipun secara statistik tidak signifikan, penelitian ini juga melaporkan bahwa konsentrasi mikroplastik berbanding lurus dengan ukuran biota zooplankton. Penelitian ini juga menjadi studi pertama yang melaporkan akumulasi mikroplastik sedimen laut dalam dari Selat Makassar. Penelitian disertasi ini mengungkapkan adanya kecenderungan akumulasi mikroplastik yang lebih tinggi seiring dengan meningkatnya kedalaman perairan.

Microplastics are tiny fragments of plastic, measuring less than 5 mm in length, that are found in the environment due to the presence of plastic pollution. The minuscule dimensions of these microplastics facilitate their effortless transportation across ocean currents. Microplastics possess sizes, colors, and shapes that closely resemble those of the indigenous sustenance of zooplankton marine organisms, which can lead to potential misidentification as food. Hence, it is crucial to acquire information on the distribution and fate of microplastic particles in aquatic environments to comprehend the potential threat they pose to the variety of organisms inhabiting these waters.
The circulation of sea water in Indonesian waters is mostly controlled by two primary current systems, namely the Monsoon Current or Arus Monsun Indonesia (ARMONDO) in Bahasa and the Indonesian Throughflow (ITF). The ITF is a major ocean current that carries large volumes of water from the Pacific Ocean to the Indian Ocean. It plays an important role in the global ocean circulation system and climate system. In contrast to ARMONDO, which is a surface current generated by seasonal winds (monsoons), the main flow of ITF water masses occurs in the thermocline layer. This is caused by differences in the characteristics of ocean temperature and salinity. The primary route of the ITF is the Makassar Strait, which transports approximately 80% of the entire volume of the ITF. The water volume from the western Pacific Ocean flows into the Indonesian Sea by passing through the Sulawesi threshold, subsequently traversing the Sulawesi Sea and the Makassar Strait. Afterward, a portion of the water is channeled straight into the Indian Ocean via the Lombok and Alas Strait. Still, most of it is sent into the Banda Sea and merges with the eastern ITF route before eventually entering the Indian Ocean.
Measurements of water mass flux, temperature, and salinity along the ITF route have been extensively conducted since the mid-1980s. However, marine pollution in this region remains unexplored and requires comprehensive understanding. Meanwhile, sea currents can easily transport pollutants such as microplastics to this area. The primary aim of this research dissertation is to address the lack of data and knowledge on microplastic pollution from deep-sea areas along the ITF pathway. This dissertation comprises five chapters, namely an introduction, three chapters dedicated to the primary research in this dissertation, and a discussion chapter that presents the elaborate study findings and provides recommendations for future research.
The initial chapter of this dissertation comprises an introductory section that provided the contextual background for the dissertation. This chapter provided an overview of the microplastic, the distribution of microplastic, the overview of microplastic studies in deep-sea areas, the current state of microplastic research in Indonesia and the research gaps in microplastic study in Indonesia. This chapter also elucidates the research gaps that will be addressed by the studies conducted in this dissertation and the novelty of this dissertation on the microplastic study.
The second chapter of this dissertation provides detailed information regarding the vertical distribution of microplastics in the water column of the deep-sea area along the ITF pathway. This study provides a comprehensive analysis of the distribution of microplastics in the deep-sea water column that could be highly significant in determining the fate and transport of microplastic within Indonesian waters that exits into the Indian Ocean. The water column samples were obtained from 11 locations, including the Makassar Strait, Alas Strait, and Lombok Strait. The collection of water samples from different depths and the measurement of physical parameters were conducted using a carousel rosette water sampler equipped with a Sea-Bird SBE 911+ conductivity-temperature-depth (CTD) instrument, reaching a depth of 2450 m. Water column samples were obtained from various depths, including near-surface layers at approximately 5 m, the maximum depth with high chlorophyll concentration, several layers of the thermocline (top, middle, and bottom), the depth with low dissolved oxygen and depths on to the bottom. Additional sampling is conducted at 500 m, 750 m, 1000 m, 1500 m, and 2000 m when the water depth exceeds 1000 m up. The extracting of microplastics from samples is carried out using the WPO (wet peroxide oxidation) procedure using a 30% hydrogen peroxide (H2O2) solution. The sample-collecting and microplastic extraction procedures in the laboratory were carefully conducted to prevent any potential contamination. Raman spectroscopy analysis was carried out for polymer identification of particle. A total of 924 microplastic particles with an average abundance of 1.062±0.646 n/L were found in the water column. The majority of shape of plastic found are fibers. The predominant polymer types identified are polymethyl vinyl ether maleic acid (PVEMA) and polyester (PES). The most concentrated amount of microplastics located in the thermocline layer and the layer after the thermocline. Our findings indicate that water temperature and water density are the most significant physical water parameters correlated to the microplastic concentration. In addition, the water mass in the thermocline layer and the layer below the thermocline that had a salinity of >33‰, which correlated with the characteristics of the North Pacific water that enters the waters of the Makassar Strait. These findings provide further evidence to support the hypothesis that the water flow from the Pacific Ocean to the Indian Ocean through Indonesian waters transports microplastics to this region.
Chapter 3 of this dissertation provided the initial findings on the consumption of microplastics by copepods in the ITF pathway. The zooplankton samples were collected from 10 stations by vertically towing nets from a depth of 300 m to the surface using a NORPAC plankton net with a mesh size of 200 µm. The zooplankton samples were preserved in a solution of 90% ethanol. In the laboratory, the copepods were sorted and classified into three different size categories to determine differences in microplastic ingestion in various sizes. The majority, precisely 87%, of the particles discovered were in the form of fibers. The three primary polymer types found were polyvinyl butyral (PVB), polyvinyl ether maleic anhydride (PVEMA), and polyester (PES). The rate of ingestion of microplastics in each size group of copepods was 0.016 n/ind for copepods measuring 200-500 µm; 0.023 n/ind for copepods measuring 500-1000 µm and 0.028 n/ind for copepods measuring 1000-2000 µm. The concentrations of the three copepod class groupings along the ITF route did not show statistically significant changes (p>0,05). Nevertheless, it was revealed that the amount of microplastics increased in direct correlation with the size of the organisms. Copepods have an important impact on distributing and transferring energy in ecosystems and are important components of the food chain because they serve as primary consumers for many aquatic organisms. Therefore, this study offers essential foundational knowledge for future ecological risk assessment of microplastics in the ITF pathway.
The fourth chapter of this dissertation contained provides initial information regarding the distribution of microplastics in marine sediments in the Makassar Strait. Deep sea sediment samples were carried out at 7 stations representing different deep-sea habitats with depths ranging from 348.2 to 1624 m. The seven stations selected represent three different sites. Sediment samples were collected at varied depths at each site to assess variations of microplastic accumulation across various ocean depths. The results of this research show that microplastic pollution has spread throughout the world's oceans and into the deep sea. The amount of microplastics ranged from 143 to 520 n/Kg. Despite the limited scope of this research, as it only examines a small number of samples from the ITF pathway, the findings provide valuable insight into the accumulation of microplastics. This knowledge is crucial for forecasting the dispersion of microplastics in the deep sea. In general, the quantity of microplastics found in sediments rises as the depth of the seabed increases, suggesting that the deep sea can accumulate the microplastics.
Chapter 5 of this dissertation contained a comprehensive explanation of the research gaps addressed in this study and research recommendation in the future research. This chapter described the novelty of the dissertation as the first research to reveal the vertical distribution of microplastics in the main pathway of the ITF. The concentration of microplastics in the water column along the ITF pathway was highest in the thermocline layer and the layer after the thermocline. The vertical distribution of microplastics in the air column is significantly influenced by the physical properties of water, particularly temperature and water density. This study presents novel findings about the ingestion of microplastics in the three sizes of planktonic copepods. While lacking statistical significance, this study reveals a direct correlation between the concentration of microplastics and the size of the zooplankton biota. This study is the first to document the accumulation of microplastic sediment in the deep-sea region of Makassar Strait. The research findings indicate that there is a tendency for microplastic accumulation to increase with increasing water depth.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Mahesa Bintang Putra Aldafi
"ABSTRAK
Skripsi ini membahas tentang usaha peningkatan hasil laut melalui budidaya ikan di laut dalam. Fokus bahasannya ialah perancangan alat angkat jala keramba jaring apung laut dalam. Dimana saat ini di Indonesia Keramba Jaring Apung Laut Dalam / KJA Offshore mulai banyak digunakan, namun metode pemanenan masih bersifat konvensional. Di harapkan dengan adanya alat angkat jala keramba jaring apung laut dalam memudahkan pemanenan hasil budidaya dan mengurangi beban operasional. Besar harapan pula rancangan alat ini dapat dimanfaatkan sebesar-besarnya oleh masyarakat.

ABSTRACT
This thesis discusses about efforts to increase marine products through deep-sea fish farming. The focus of the discussion is to design a lifting equipment mesh cages in deep sea floats. Where at this time in Indonesia the Cage of Deep Sea Floating Nets/KJA Offshore began to be widely used, but the method of harvesting was still conventional. Expected by the existence of lifting equipment mesh cages of floating net in facilitating the harvesting of cultivation products and reducing the operational burden. It is also hoped that the design of this tool can be utilized as much as possible by the community."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ashiila Friska Dewi
"Lokasi penelitian ini berada di daerah Kecamatan Cimanggu dan sekitarnya yang secara geografis terletak pada koordinat batas timur laut UTM 262370 E 9198862 N serta batas barat daya UTM 256431 E 9192930 N. Wilayah ini mencakup Desa Cijati, Pesahangan, Desa Negarajati, serta desa sekitarnya, Kecamatan Cimanggu, Kabupaten Cilacap, Jawa Tengah. Daerah penelitian termasuk ke dalam Formasi Halang berdasarkan Peta Geologi Lembar Majenang (Kastowo dan Suwarna, 1996). Formasi Halang merupakan salah satu Formasi pengisi Cekungan Banyumas, terendapkan pada umur Miosen Tengah hingga Pliosen Awal, dengan dominasi batuan sedimen jenis turbidit yang terendapkan pada zona batial atas. Batuan sedimen jenis turbidit inilah yang menjadi fokus penelitian kali ini untuk mengetahui fasies endapan turbidit serta asosiasinya agar dapat menenentukan sub-lingungan pengendapan pada daerah penelitian. Bagian timur laut daerah penelitian didominasi oleh ukuran butir yang lebih kasar sedangkan pada bagian barat daya didominasi oleh butiran yang lebih halus. Daerah penelitian terbukti terendapkan dengan mekanisme turbidit dikarenakan jenis litologi yang beragam, dari yang berbutir kasar (breksi – pasir sedang) hingga berbutir halus (pasir halus – lanau). Didapatkan umur relatif Formasi Halang yang mencakup daerah penelitian pada Miosen Tengah (N11) berdasarkan analisis mikrofosil. Berdasarkan pengukuran measuring section, analisis makroskopis dan mikroskopis, didapatkan 5 lintasan log stratigrafi yang memiliki fasies dominan proksimal pada timur laut dan medial pada barat daya berdasarkan klasifikasi dekatnya dari sumber sedimen (Nichols, 2009). Diasosiasikan dengan sub-lingkungan pengendapan kipas laut dalam (submarine fan) dan diinterpretasikan merupakan bagian inner fan dan middle fan, dengan tiga fasies pengendapan channel dan levee serta depositional lobes berdasarkan Nichols (2009).

The location of this research is in the Cimanggu region and its surroundings which is geographically located at the coordinates of the northeastern boundary of UTM 262370 E 9198862 N and the southwest boundary of UTM 256431 E 9192930 N. This area includes Cijati Village, Pesahangan, Negarajati Village, and the surrounding villages, Subdistrict Cimanggu, Cilacap Regency, Central Java. The research area is included in the Halang Formation based on the Geological Map of the Majenang Sheet by Kastowo and Suwarna (1996). The Halang Formation is one of the filling formations of the Banyumas Basin, deposited in the Middle Miocene to Early Pliocene age, with the dominance of turbidite sedimentary rocks deposited in the upper bathial zone. This turbidite sedimentary rock is the main focus of this research to determine the turbidite depositional facies and their associations in order to determine the sub-environment of the deposition in the study area. The northeastern part of the study area is dominated by coarser grain sizes, while the southwest is dominated by finer grains. The study area was proven to be deposited by a turbidite mechanism due to the various types of lithology, from coarse-grained rocks (breccia – medium sand) to fine-grained rocks (fine sand – silt). The relative age of the Halang Formation which covers the study area is in the Middle Miocene (N11) based on microfossil analysis. Based on measuring section measurements, macroscopic and microscopic analysis, obtained 5 stratigraphic log paths which have dominant facies proximal to the northeast and medial to the southwest based on the close classification of sediment sources (Nichols, 2009). Associated with sub-depositional sub-environment of submarine fans and interpreted as part of the inner fan and middle fan, with three depositional facies channel, levee and depositional lobes based on Nichols (2009)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Made Adi Wardana
"Pengembangan lapangan gas laut dalam memiliki tantangan teknis, terkait fasilitas produksi dan teknologi untuk dapat memproduksikan migas pada kondisi lingkungan yang ekstrem. Disamping itu, biaya yang diperlukan lebih besar dibandingkan pengembangan lapangan laut dangkal. Dalam penelitian ini dilakukan analisa secara teknis dan ekonomis terhadap pengembangan lapangan gas laut dalam di Selat Makasar dengan metode subsea tieback, dengan memanfaatkan kapasitas tersedia dari floating production unit (FPU) yang sudah ada. Analisa teknis meliputi penentuan ukuran pipa (flowline) optimal, yang dapat memenuhi target deliverabilitas gas, memenuhi kriteria teknis lainnya, serta analisa flow assurance, khususnya mitigasi hidrat untuk menjamin keberlangsungan aliran fluida dari sumur bawah laut hingga ke titik jual. Dari analisa teknis akan didapatkan beberapa konfigurasi ukuran pipa dan mitigasi hidrat. Analisa ekonomi meliputi perhitungan biaya investasi untuk setiap opsi yang memenuhi kriteria teknis, kemudian dilanjutkan penghitungan parameter keekonomian berdasarkan aturan Production Sharing Contract (PSC) yang berlaku di Indonesia. Dengan harga gas 6 US$/mmbtu, didapatkan nilai Government Take (GT) 609 juta US$ dan Internal rate of Return (IRR) 15.13%. Sensitivitas analisis dilakukan dengan variasi harga jual gas dan mengubah besaran kontraktor split untuk meningkatkan IRR sehingga dapat mencapai nilai yang masih dapat diterima dari sisi Kontraktor. Untuk mendapatkan IRR yang lebih besar dari 20%, diperlukan kontraktor split sebesar 48%. Hasil analisa keekonomian dapat menjadi pertimbangan dalam penentuan besaran kontraktor split untuk pengembangan lapangan gas laut dalam.

Deepwater gas field development has technical challenges, related to production facilities and technology that can be used for producing oil and gas in the extreme ambient conditions. The required cost is also higher than shallow water. This research analyzed technical and economical aspect of deepwater gas field development at Makasar Strait using subsea tieback method, which utilize the available capacity from existing Floating Production Unit (FPU). Technical analysis include selection the optimum flowline size, which meet the gas deliverability and other criteria as well. It also cover the flow assurance analysis, particularly hydrate mitigation, to ensure the flow continuity of oil and gas from subsea well to the sales point. Economic analysis include the calculation of investment cost on each option that meet the technical criteria above. Then continued with calculation of economic parameter based on applicable Indonesia Production Sharing Contract (PSC) scheme. With gas price of 6 US$/mmbtu, will give Government Take (GT) of 609 million US$ and Internal rate of Return (IRR) 15.13%. Sensitivity analysis has been done by varrying the gas sale price and changing the percentage of contractor split to increase the IRR to meet the value that still acceptable from Contractor side. Contractor split of 48% is required to achieve IRR higher than 20%. This economic analysis result could become a consideration in defining the percentage of Contractor Split for deepwater gas development.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44510
UI - Tesis Membership  Universitas Indonesia Library
cover
Achmad Dhani Maulana
"Konsumsi mineral untuk pembuatan alat dan fasilitas yang berguna bagi manusia terus meningkat selama beberapa dekade. Penambangan terestrial telah menjadi metode penambangan utama untuk mengekstraksi mineral bumi selama beberapa ribu tahun, namun kemunculan deep-sea mining sedang dalam perjalanan sejak tahun 1960-an dan sudah pada titik komersialisasi. Isu dampak dari penambangan laut dalam menjadi alasan utama berkembangnya deep-sea mining. deep-sea mining berada pada ekosistem yang paling rapuh di planet ini yang disebut zona bentik, sekaligus merupakan ekosistem terpenting di planet ini untuk mendukung ekosistem lain dalam memelihara telur, larva, dan juvenilnya. Dampak deep-sea mining terhadap ekosistem laut dalam juga menjadi perhatian Indonesia, karena penambangan laut dalam dimungkinkan untuk dilakukan, namun belum ada peraturan perlindungan lingkungan nasional untuk melestarikan atau melindungi ekosistem laut dalam. Kondisi kekosongan hukum dalam deep-sea mining ini dapat diisi dengan prinsip kehati-hatian yang telah dicanangkan oleh Pemerintah Indonesia dalam UU No. 32 Tahun 2009, namun hal tersebut bukanlah solusi yang mutlak atau optimal untuk mengatasi dampak deep-sea mining, dengan tetap mengacu pada konvensi, perjanjian, atau traktat internasional yang telah diratifikasi atau dikontribusikan oleh Pemerintah Indonesia.

The consumption of minerals for manufacturing tools and facilities that are helpful for humans is on the rise for decades. Terrestrial mining has been the main mining method to extract the earth's minerals for several thousand years, yet the emergence of deep-sea mining is on its way since the 1960s and is already on the point of being commercialized. The issues of impact from deep-sea mining are the main reason for the development of deep-sea mining. The action of deep-sea mining is located in the most fragile ecosystem on this planet called as benthic zone, while also the most important ecosystem on this planet to support other ecosystems to nurture their eggs, larvae, and juveniles. The impact of deep-sea mining on deep-sea ecosystems is also a concern for Indonesia, as it is possible to do deep-sea mining, yet there are no national environmental protection regulations to preserve nor protect the deep-sea ecosystem. This legal vacuum condition in deep-sea mining could be filled with the precautionary principle that the Indonesia Government in Law No. 32 of 2009, yet it isn’t the absolute nor the optimal solution to tackle the impact of deep-sea mining, while reflecting on any International convention, agreement, or treaty that have been ratified or contributed by the Indonesian government."
Depok: Fakultas Hukum Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library