Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Intan Primasari
"ABSTRAK
Kanker merupakan salah satu penyakit yang paling mematikan bagi manusia. Menurut WHO 2015 , kanker adalah penyebab kematian nomor 2 di dunia sebesar 13 setelah penyakit kardiovaskular. Salah satu hal yang dapat dilakukan untuk penelitian kanker menggunakan machine learning adalah melakukan pendeteksian jenis kanker dengan memanfaatkan microarray data. Microarray data yang memiliki banyak fitur. Itu merupakan salah satu kendala dalam penerapan teknik machine learning. Hal ini akan mempengaruhi perfoma atau keakuratan dari hasil klasifikasi pada data kanker. Oleh karena itu, metode pemilihan fitur diperlukan untuk meningkatkan perfoma dalam pendeteksian kanker. Dalam tugas akhir ini dilakukan perbandingan pemilihan fitur menggunakan Genetic Algorithm dan Laplacian Score. Fitur-fitur yang sudah terpilih pada data kanker kemudian digunakan dalam proses klasifikasi Support Vector Machines. Hasilnya, didapatkan akurasi terbaik saat dengan metode pemilihan fitur menggunakan Genetic Algorithm yaitu 98,69 dengan penggunaan 40 fitur untuk data kanker prostat dan 98,97 dengan penggunaan 30 fitur untuk data kanker kolon.

ABSTRACT
Cancer is one of the most deadly diseases for humans. According to the WHO 2015 , cancer is the causes of the death number two in the world by 13 after cardiovascular disease. Taking advantage from microarray data, machine learning methods can be applied to help cancer prediction according to its types. Microarray data has many features. It is one of the obstacles in the machine learning techniques. This will affect the performance or accuracy of the classification results on cancer data. Therefore, feature selection methods are required to increase performance in cancer prediction. This research proposed comparison of feature selection using Genetic Algorithm and Laplacian Score. Features that are already selected in the cancer data then used in the Support Vector Machines classification. The results show that the best accuracy obtained when using Genetic Algorithm with percentage of 98,69 by using 40 features for prostate cancer data and 98,97 by using 30 features for colon cancer data. "
2017
S68354
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andi Wulan Lestari A.
"Dalam dekade terakhir ini, kanker menjadi pusat perhatian dunia kesehatan dikarenakan penyakit ini termasuk dalam penyebab utama kematian di seluruh dunia. Menurut statistik GLOBOCAN, International Agency for Research on Cancer IARC pada tahun 2012, terdapat 14.067.894 kasus kanker baru dengan 8.201.575 kematian akibat kanker di seluruh dunia. Oleh sebab itu, dibutuhkan tindakan pencegahan dan pengobatan yang efektif. Salah satunya dengan metode klasifikasi kanker. Metode klasifikasi kanker dapat dijadikan sebagai alat bantu tenaga medis untuk menangani kanker. Dalam tugas akhir ini diusulkan algoritma untuk mengklasifikasikan data kanker dengan menggunakan Fuzzy Possibilistic C-means FPCM dan metode baru yang menggunakan Normed Kernel Function-based Fuzzy Possibilistic C-means NKFPCM. Tujuannya untuk mendapatkan keakuratan terbaik dalam pengklasifikasian data kanker. Untuk meningkatkan keakuratan dua metode tersebut, dilakukan evaluasi kandidat fitur dengan menggunakan pemilihan fitur. Untuk pemilihan fitur digunakan metode Laplacian Score. Hasil yang diperoleh menunjukkan perbandingan keakuratan dan running time dari FPCM dan NKFPCM tanpa dan dengan dilakukan pemilihan fitur. Hasilnya, didapatkan akurasi terbaik saat dengan menggunakan metode NKFPCM dengan dilakukan pemilihan fitur, yaitu 90,91 dengan penggunaan 750 fitur untuk data kanker kandung kemih, 100 dengan penggunaan 250 fitur untuk data kanker darah leukemia , 96,67 dengan penggunaan 3.000 fitur untuk data kanker prostat, dan 100 dengan penggunaan 250 fitur untuk data kanker lambung.

Over the past decade, cancer has become the center of attention in the medical field due to its reputation as one of the main causes of death in the worldwide. According to GLOBOCAN statistics, International Agency for Research on Cancer IARC , there were 14,067,894 new cancer cases and 8,201,575 cancer related deaths occurred in 2012. Therefore, preventive actions and effective treatments are required to reduce these threats. One method of handling of cancer using cancer classification. Cancer classification method can be used as aids to handle Cancer. This research proposed an algorithm to classify cancer data using Fuzzy Possibilistic C Means FPCM and a new method, Normed Kernel Function Based Fuzzy Possibilistic C Means NKFPCM. The purpose of this research is to obtain the best accuracy in the classification of cancer data. To improve the accuracy of these two methods, the feature candidate will be evaluated using feature selection. The feature selection was conducted using Laplacian Score. The results obtained show the comparison of the accuracy and running time of FPCM and NKFPCM without and with feature selection. The results show that the best accuracy obtained when using NKFPCM with features selection, with percentage of 90.91 by using 750 features for bladder cancer data, 100 by using 250 features for blood cancer leukemia data, 96.67 by using 3,000 features for prostate cancer data, and 100 by using 250 features for gastric cancer data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S66693
UI - Skripsi Membership  Universitas Indonesia Library