Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Maryanto
Abstrak :
Mounting vakum adalah suatu metode mounting yang dilakukan dalam kondisi vakum. dengan menggunakan alai mounting vakum. Dengan mounting vakum. dapat dicegah terjadinya celah antara sampel dan bohan mounting, sehingga kerusakan bagian tepi sampel yang akan dianalisa selama preparasi tidak terjadi. Proses mounting dilakukan setelah kondisi vakum dicapai. Sampel yang akan di-mounting dilelakan di tengah-tengah cetakan di dalam media yang alum divakumkan. Cairan mounting disiapkan di luar media akan mengisi cetakan setelah media divakumlam. Ketika cetakan hampir penuh, pengisian cetakan dihentikan dan kondisi dipertahankan tetap vakum sampai gelembung udara dalam cetakan hilang. Setelah bahan mounting telah mengeras baru dikeluarkan. Akhimya, hasil mounting dipreparasi dan diambil foto mikrostruktur bagian tepi sampel, dan membandingkannya dengan metode mounting tanpa vakum, selanjutnya dianalisa. Hasil akhir menunjukkan bahwa mounting vakum mencegah hilangnya lapisan oksida pada permukaan sampel filter dan menghasilkan ketebalan lapisan nitrokarhurasi sampel baja yang lebih tebal bila dibandingkan dengan mounting tanpa ruang vakum.
Depok: Fakultas Teknik Universitas Indonesia, 1997
S41984
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewin Purnama
Abstrak :
Perkembangan ilmu dan teknologi material dewasa ini memacu dikembangkan material dengan karakter sesuai yang diharapkan antara lain ulet, keras, tahan korosi, tahan panas, ringan dan lain sebagainya. Aluminium salah satu material yang menarik perhatian untuk dikaji karena dapat membentuk anodic porous alumina yang memiliki sifat khas yaitu keteraturan strukturnya yang terbentuk. Anodic porous alumina sangat banyak digunakan baik dalam sektor yang sederhana dan inovatif. Teknologi yang saat ini sangat penting untuk pembuatan anodic porous alumina adalah proses anodizing. Sifat dan struktur aluminum oksida tersebut sangat dipengaruhi oleh beberapa variabel proses anodisasi seperti waktu anodisasi, jenis dan konsentrasi larutan elektrolit, tegangan dan rapat arus, serta temperatur. Pembentukan anodic porous alumina dari aluminium foil dilakukan dengan metoda anodisasi sederhana. Proses anodisasi dilakukan dalam larutan elektrolit asam asetat 0,2 M dengan waktu anodisasi 30 menit yang dilakukan dengan pada temperatur 4 °C, 22 °C dan 40 °C dan tegangan 10 V, 40 V, 70 V, 90 V dan 120 V. Pengamatan ukuran diameter pori dilakukan dengan alat measuring microscope sedangkan pengukuran ketebalan oksida dilakukan dengan alat SEM. Hasil pengamatan menunjukkan bahwa ukuran diameter pori aluminium oksida yang terbentuk dan ketebalan lapisan oksida pada aluminium akan meningkat seiring dengan peningkatan temperatur dan tegangan anodisasi. Rata-rata ukuran diameter pori yang terbentuk minimal terjadi pada temperatur 4 °C dan tegangan 10 volt yaitu 269,4 µm dan rata-rata ukuran diameter pori maksimal yang terbentuk terjadi pada temperatur 22 °C dan tegangan 90 V. Rata-rata ketebalan lapisan oksida minimal terjadi pada temperatur 4 °C dan tegangan 10 volt yaitu 0,38797 µm dan rata-rata ketebalan lapisan oksida maksimal terjadi pada temperatur 40 °C dan tegangan 90 volt yaitu 16,83 µm
Recently, the development of science and technology material drive the material to be developed in accordance with the character that is expected, among other ductile, hard, corrosion resistant, heat resistant, light and so forth. Aluminum, one of the material to attract attention because it can be formed anodic porous alumina with a regularity that is typical nature of the structure that formed. Anodic porous alumina is widely used in both the simple and innovative. The technology at this time is very important for making porous anodic alumina is a process of anodizing. Properties and structure of the porous aluminum oxide was influenced by several variables from anodizing process like time, type and concentration of solution, voltage and current density, and temperature. The formation of porous anodic alumina from the aluminum foil is done with simple methods of anodizing. Process of anodizing carried out in acid acetate electrolyte solution 0.2 M , with anodizing time of 30 minutes with the temperature at 4 °C, 22 °C and 40 °C and voltage 10 V, 40 V, 70 V, 90 V and 120 V. Diameter pore size of the observation is done by means of measuring microscope while oxide thickness measurements made with an SEM. Observation results show that the size of pore diameter aluminum oxide thickness and that the aluminum oxide layer will be increased in line with the increase of anodizing temperature and voltage. Average pore size diameter that occurred in at least 4 °C and the voltage 10 volt is 269,4 µm and average pore diameter of maximum size that occurred in 22 °C and voltage 90 V. The average oxide layer thickness occurs at temperatures at least 4 oC and voltage 10 volt is 0.38797 µm and the average oxide layer thickness occurs at the maximum temperature 40 °C and voltage 90 volt is 16.83 µm.
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26267
UI - Tesis Open  Universitas Indonesia Library
cover
Medio Feby Fitriana
Abstrak :
Magnesium (Mg) merupakan logam ringan dan dapat diserap tubuh melalui proses degradasi atau bersifat biodegradable. Namun Magnesium dan paduannya mengalami degradasi yang sangat cepat di dalam lingkungan fisiologis akibatnya kekuatan mekanik dari implan akan menurun. Untuk meningkatkan ketahanan korosi dari paduan magnesium dapat dilakukan dengan metode anodizing. Lapisan oksida yang dihasilkan dari proses anodizing memiliki banyak retakan dan pori pada permukaannya. Retakan dan pori ini dapat ditutup melalui metode sealing beeswax-colophony. Proses anodizing dilakukan pada tegangan konstan 5 volt dalam elektrolit 0.5 M Na3PO4 pada suhu 30°C ± 1°C dengan variasi waktu 10, 20, dan 30 menit. Pada waktu 10, 20, dan 30 menit terukur tebal lapisan 6, 14, dan 16 μm. Optimasi waktu anodizing dihasilkan pada anodizing 20 menit. Untuk mengetahui laju korosi paduan magnesium yang telah di anodizing dan sealing dilakukan dengan uji hilang berat (invitro) selama 14 hari dalam larutan 0,9% NaCl pada suhu 37°C. Hasil uji hilang berat divalidasi dengan uji potentiodynamic polarization. Hasil uji hilang berat yang menunjukkan laju korosi dari substrat; anodizing; substrat + beeswax-colophony sealing; anodizing + hidrotermal sealing; anodizing + beeswax-colophony sealing berturut-turut yaitu 7,91; 6,26; 5,0; 6,06; dan 3,30 mmpy. Hasil uji polarisasi menunjukkan peningkatan ketahanan korosi yang diperlihatkan oleh kenaikan potensial korosi untuk substrat; anodizing; substrat + beeswax-colophony sealing; anodizing + hidrotermal sealing; anodizing + beeswax-colophony sealing berturut-turut adalah -1.49, -1.57, -1.54, -1.43, dan -1,17 VAg/AgCl dan penurunan arus korosi berturut-turut 5.72x10-4, 3.40x10-5, 2.54x10-8, 2.19x10-5 , dan 3.19x10-8 A/cm2. Hasil tersebut menunjukkan bahwa perlakuan anodizing dan sealing dengan beeswax-colophony terbukti dapat meningkatkan ketahanan korosi paduan AZ31 2 kali lipat.
Magnesium (Mg) is the light metals and absobable materials by the human body through a process of degragradation known as biodegradable. However, Mg and its alloys has a rapid corrosion rate in physiological environtment causes reduction of mechanical properties of implants. Anodizing is widely used to increase corrosion resistance of magnesium alloys. The oxide layer produced while anodizing process has many cracks and porous on its surface. Cracks and porous could covered by beeswax-colophony sealing method. The anodization process was carried out at constant voltage 5 volt in electrolyte of 0.5 M Na3PO4 at 30 ° C ± 1 ° C with variations of time 10, 20, and 30 minutes. The thickness of layer was measured at 10, 20, and 30 minutes are 6, 14, 16 μm respectively. Anodizing time optimization was obtained at 20 minutes. to determine the corrosion rate of anodized and sealed magnesium alloy was carried out by in-vitro test for 14 days on 0.9% NaCl solution at 37 ° C. The results of the weight loss test were validated by potentiodynamic polarization test. The weight loss test results exhibits the rate of corrosion of the substrate, anodizing; substrate + beeswax-colophony sealing; anodizing + hydrothermal sealing; anodizing + beeswax-colophony sealing are 7.91, 6.26, 5.0, 6.06, and 3.30 mmpy respectively. The results of corrosion on AZ31 show by increased corrosion potential, -1.49, -1.57, -1.54, -1.43, and -1.17 VAg/AgCl and decreased corrosion currents, 5.72x10-4, 3.40x10-5, 2.54x10-8, 2.19x10-5, and 3.19x10-8 A/cm2 on the substrate; anodizing; substrate + beeswax-colophony sealing; anodizing + hydrothermal sealing; anodizing + beeswax-colophony sealing. These results prove anodizing and coatings increase corrosion resistance of AZ31 twice.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hutasoit, Martino R.
Abstrak :
Modifikasi permukaan aluminium secara elektrokimia merupakan suatu proses yang tengah berkembang pesat saat ini. Modifikasi permukaan secara elektrokimia pada awalnya lebih diarahkan pada peningkatan nilai ketahanan korosi, peningkatan kekerasan, dan juga peningkatan nilai estetika. Namun pada perkembangannya, salah satu proses elektrokimia, yaitu anodisasi, telah berkembang menjadi suatu proses modifikasi permukaan yang bertujuan untuk diaplikasikan pada teknologi berbasis nanoteknologi. Pemanfaatan lapisan oksida pada permukaan aluminium hasil proses anodisasi dilakukan dengan memanfaatkan pori (porous anodic alumina) yang terbentuk sebagai template pada pembuatan material yang berbasis pada nano teknologi seperti quantum-dot arrays, photonic crystals, magnetic memory arrays, nanowire dan berbagai alat mikroelektronik lainnya. Penelitian ini bertujuan untuk mengetahui pengaruh perubahan konsentrasi larutan elektrolit terhadap ketebalan lapisan oksida yang terbentuk pada permukaan aluminium. Penelitian dilakukan dengan menggunakan sampel logam berupa aluminium foil (pure aluminium, 96.49%Al) dengan permukaan anodisasi sebesar 2X2 cm. Larutan elektrolit yang digunakan adalah asam oksalat dengan variasi konsentrasi 0.4 M, 0.5 M, 0.6 M. Tegangan pada proses adalah 32.5 Volt, temperatur dijaga pada rentang 4°C - 16°C, dan diaduk dengan menggunakan magnetic stirrer 500 rpm. Hasil yang diperoleh melalui penelitian ini adalah bahwa tidak terjadi perubahan warna yang signifikan pada proses anodisasi dengan larutan asam oksalat. Nilai ketebalan lapisan oksida yang terbentuk akan semakin meningkat pada peningkatan konsentrasi asam oksalat. Nilai kekerasan pada sampel aluminium foil tidak dapat dilakukan dengan menggunakan metode microhardness tester. ......Modification of aluminum surface with electrochemistry methods are developing rapidly nowadays. This surface modification were initially intended to increase the corrosion resistance, hardness, properties and improving the aesthetic appearance of aluminum. Recently, one of these electrochemistry methods, anodizing, were developed into one of the surface modification that can be applied in nanotechnology. Oxide layer which formed by anodizing process in the aluminum surface could be used as template for microelectronic nanotechnology material such as quantum-dot arrays, photonic crystals, magnetic memory arrays, nanowire because of it porous anodic alumina texture. This research is conducted to found the effect of electrolyte concentration changes on thickness of oxide layer formed in aluminum surface. This research is carried out with aluminum foil sample (pure aluminum, 96.49% Al) with anodizing surface measured 2X2 cm. Electrolyte which used in this research is oxalic acid with concentration variation 0.4 M, 0.5 M, 0.6 M. This process using 32.5 Volt potential, temperature were kept in range of 4°C - 16°C, and the electrolyte were stirred electromagnetically at 500 rpm. The result from this research shows that the colour of oxide layer by anodizing of aluminum in oxalic acid solution was transparent. By anodizing in oxalic acid, the thickness of formed oxide layer was dependent with the increase of concentration. Hardness testing on aluminum foil or oxide layer could?nt use to obtain hardness number in this research.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41633
UI - Skripsi Open  Universitas Indonesia Library
cover
Panji Aji Wibowo
Abstrak :
Teknologi pengolahan bijih nikel kadar rendah dengan leaching mengunakan Asam Nitrat (HNO3) telah dikembangkan dan dipatenkan oleh suatu perusahaan riset Australia, Direct Nickel. Proses ini diklaim dapat mengolah semua range bijih nikel laterit dengan % ektraksi nikel dan kobalt mencapai > 90%. Salah satu keunggulan proses ini adalah reagen leaching dapat didaur ulang kembali dan menggunakan material SS 304 pada tangki reaktor. Namun proses ini tidak menghendaki adanya ion Cl- karena dikhawatirkan dapat merusak tangki reaktor. Umumnya Cl- ini dapat berasal dari air untuk proses atau dari bijih nikel itu sendiri. Penelitian ini dilakukan untuk mengetahui perilaku korosi, terutama korosi sumuran dari material SS 304 dan SS 316 dalam campuran larutan HNO3 dan NaCl. Variasi campuran larutan HNO3 yang digunakan adalah 0.17 M, 0.52 M dan 1.73 M, yang menggambarkan kondisi free-acid di dalam reaktor Sedangkan variasi campuran larutan NaCl yang digunakan adalah 0.1 M dan 1 M. Pengujian yang dilakukan meliputi pengujian dengan metode polarisasi siklik dan electrochemical impedance spectroscopy (EIS). Dari hasil pengujian polarisasi sikilik yang dilakukan, pitting corrosion terjadi pada sampel SS 304 dan SS 316 pada perendaman dalam campuran campuran larutan 1.73 M HNO3 dan 1 M NaCl dan pada sampel SS 304 dalam campuran campuran larutan 0.52 M HNO3 dan 1 M NaCl. Hal ini juga dikonfirmasi oleh hasil dari pengujian EIS. Pengamatan terhadap potensial korosi sumuran dari setiap tipe campuran HNO3 dan NaCl, secara umum SS 316 memberikani ketahanan terhadap korosi sumuran yang lebih baik dari SS 304, terutama akibat adanya unsur pemadu Mo. Pengujian pada komposisi lapisan oksida menunjukkan bahwa walaupun ditemukan adanya unsur Cl dalam lapisan tersebut, korosi sumuran cenderung tidak terjadi pada spesimen SS316.
Processing technology of low grade ores by Nitric Acid leaching has been developed and patented by an Australian research company, Direct Nickel. This process is claimed to be able to treat all the range of laterite ore with extraction of nickel and cobalt reach > 90%. One advantage of this process is the leaching reagent can be recycled back and use the 304 SS material in the reactor tank. The presence of Cl ions in the leaching process was avoided, because it feared could damage the reactor tank. The Cl- could comes form the water fro process or even the nickel ore. This research was conducted to determine the corrosion behavior, particularly pitting corrosion of materials SS 304 and SS 316 in HNO3 and NaCl solution mixture . Variations HNO3 solution used was 0.17 M, 0.52 M and 1.73 M, which descriebd the variation of free-acid concentration in reactor. For NaCl solution using 0.1 M and 1 M concentration. The test was conducted with cyclic polarization method and electrochemical impedance spectroscopy (EIS). From the results of cyclic polarization tests, pitting corrosion occurs on samples SS 304 and SS 316 after immersion in a mixed solution of 1.73 M HNO3 and 1 M NaCl, and the SS 304 samples in a mixed solution of 0.52 and 1 M HNO3 M NaCl. This is also confirmed by the EIS. By the observation of the pitting corrosion potential of each samples SS304 and SS316 immersed in each type of HNO3 anda NaCl solution mixture, generally SS316 provides good resistance to pitting corrosion rather than SS 304, mainly due to the presence of Mo as alloying element. Tests on the composition of the oxide layer indicates that although there is an element found in the layer Cl, pitting corrosion unlikely to have occurred on the specimen SS316.
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42971
UI - Tesis Membership  Universitas Indonesia Library
cover
Sipayung, Sandhy Putra Pangidoan
Abstrak :
Aluminium merupakan salah satu material logam yang banyak digunakan serta dikembangkan pada berbagai macam aplikasi. Untuk meningkatkan kualitas aluminium, baik sifat fisik maupun mekanisnya, dilakukan beberapa perlakuan terhadap aluminium tersebut. Salah satu proses yang dilakukan adalah dengan rekayasa permukaan melalui proses anodisasi. Dalam proses anodisasi, pada permukaan aluminium akan terbentuk lapisan aluminium oksida yang amat keras dan tahan terhadap korosi. Saat ini pengembangan proses anodisasi dikembangkan dalam pengetahuan tentang nanoteknologi. Melalui proses anodisasi yang dilakukan diharapkan lapisan yang dihasilkan memiliki kebaikan sifat-sifat mekanis seperti ketebalan, kekerasan, dan karakteristik diameter pori yang sesuai agar nantinya dapat digunakan pada aplikasi nanoteknologi seperti pembuatan carbon nanotube, nanoporous membrane, ataupun quantum dots. Salah satu parameter yang terpenting dan menentukan karakteristik permukaan hasil anodisasi adalah konsentrasi dan jenis elektrolit yang digunakan. Penelitian kemudian dilakukan untuk memahami pengaruh dari besarnya penambahan konsentrasi elektrolit terhadap karakteristik dari lapisan oksida yang dihasilkan pada permukaan aluminium foil. Pada penelitian ini digunakan elektrolit tetap asam oksalat 0,5 M, serta variabel bebas penambahan asam sulfat 0,12 M, 0,24 M, 0,36 M, dan 0,48 M. Hasil penelitian kemudian menunjukkan bahwa lapisan oksida yang dihasilkan benar merupakan lapisan Al2O3 dan dengan meningkatnya konsentrasi asam sulfat lapisan oksida yang dihasilkan akan memiliki permukaan yang semakin pekat warna kelabu-nya serta meningkat ketebalannya, hingga mencapai ketebalan tertinggi sekitar 14,51 µm pada konsentrasi 0,36 M namun menurun hingga ketebalan 9,95 µm pada konsentrasi 0,48 M. Kekerasan lapisan yang dihasilkan tidak valid karena alat pengujian yang digunakan kurang mendukung untuk jenis sampel yang digunakan. ......Aluminium is one of the most common metal that has been used and developed in wide application. To enhance the quality of aluminium (physical and mechanical properties), some process have been done to the aluminium itself. One of the process is by changing its surface properties with anodizing process. In anodizing process, the aluminium oxide layer would be formed on the surface, and it has great hardness and good corrosion resistance. At the present, the anodizing process has been developed for the knowledge of nanotechnology. By anodizing, it is hoped that the layer produced would have good mechanical properties like thickness, hardness, and good pore diameter characteristic. Then, with it good properties, it can be used in nanotechnology application like in the manufacturing of carbon nanotube, nanoporous membrane, and quantum dots. One of the most important parameter to the characteristic of the anodizing surface layer is the use of electrolyte. This experiment was conducted to study the effect of increasing electolyte concentration to the characteristic of the oxide layer that produced at the surface of aluminium foil. The experiment used 0,5 M oxalic acid mixed with 0,12 M, 0,24 M, 0,36 M, and 0,48 M sulfuric acid. The results showed that the oxide layer was Al2O3 layer. With the increase of sulfuric acid concentration, the oxide layer would be darker in the colour of gray and has some increasing in thickness. The highest thickness was about 14,51 µm in the addition of 0,36 M electrolytic concentration, but it is decreased to the 9,95 µm thickness when the concentration increased up to 0,48 M. The hardness of the layer could not be tested. The hardness testing machine used was not supported the kind of sample that were tested.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41736
UI - Skripsi Open  Universitas Indonesia Library