Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Luthfi Azra Aulia
Abstrak :
Kualitas hidup adalah suatu payung yang melingkupi variasi konsep fungsional, status kesehatan, persepsi, kondisi kehidupan, gaya hidup, dan kebahagiaan. Indikator dalam mengukur kualitas hidup terbagi menjadi dua, yakni indikator subjektif dan indikator objektif. Indikator subjektif berkaitan langsung dengan berbagai pengalaman yang seseorang alami dalam hidupnya. Di sisi lain, indikator objektif dikaitkan dengan wujud kepemilikan berbagai material atau faktor eksternal yang mempengaruhi berbagai pengalaman seseorang dalam menjalani kehidupannya. Pada penelitian ini, indikator objektif dipilih sebagai alat ukur kualitas hidup yang mencakup karakteristik sosial, ekonomi, kesehatan, dan lingkungan. Data yang digunakan dalam penelitian terdiri dari dua jenis data, yakni data numerik dan kategorik. Data yang digunakan merupakan data sekunder berisikan indikator objektif kualitas hidup di 82 negara pada tahun 2020. Adapun metode yang digunakan adalah algoritma K-prototypes dan Two Step Cluster (TSC) yang merupakan bagian dari metode pengelompokan nonhierarki dan hierarki serta dapat menangani data bertipe campuran (numerik dan kategorik). Hasil dari penelitian ini menunjukkan bahwa algoritma K-prototypes merupakan metode yang memberikan hasil lebih baik dalam mengelompokkan data penelitian dibandingkan algoritma TSC dengan nilai koefisien Silhouette sebesar 0,577, yang bermakna bahwa kelompok yang terbentuk telah memiliki struktur yang baik. Kelompok optimal yang terbentuk adalah sebanyak 2 kelompok yang disusun oleh 40 negara pada Kelompok 1 dan 42 negara pada Kelompok 2. Kelompok 2 cenderung memiliki profil kualitas hidup yang lebih baik dibandingkan Kelompok 1. ......Quality of life is a phrase that covers a variety of functional concepts, health status, perception, living conditions, lifestyle, and happiness. Indicators in measuring quality of life are divided into two, namely subjective indicators and objective indicators. Subjective indicators are measured based on various experiences that people went through in life. On the other hand, objective indicators are measured based on various materials or external factors that affect a person's experiences in everyday life. In this study, objective indicators were chosen as quality measurement tools based on social, economic, health, and environmental characteristics. The data used in the study consisted of two types of data, namely numerical and categorical data. The data is secondary data containing objective indicators of quality of life in 82 countries in 2020. The method used in this research is the K-prototypes and Two Step Cluster (TSC) algorithm which is part of the non-hierarchical and hierarchical grouping method and can handle mixed-type data. The results of this study indicate that the K-prototypes algorithm is a method that gives better results than the TSC algorithm with a silhouette coefficient value of 0.577, which means that the formed group already has a good structure. The optimal groups formed are 2 groups composed of 40 countries in Group 1 and 42 countries in Group 2. Group 2 tends to have a better quality of life profile than Group 1.
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sarah Syarofina
Abstrak :
Inhibitor dipeptidil peptidase 4 (DPP-4) baru perlu dikembangkan untuk meminimalkan efek samping merugikan yang diakibatkan oleh obat golongan inhibitor DPP-4 yang telah terdaftar. Penelitian ini bertujuan untuk menghasilkan subset molekul inhibitor DPP-4 yang representatif dengan mengaplikasikan algoritma K-Modes clustering dengan Levenshtein distance pada proses clustering dan melakukan analisis pemilihan molekul inhibitor DPP-4 berdasarkan kriteria nilai logP dari aturan Lipinskis Rule of 5. 2053 molekul inhibitor DPP-4 diperoleh dari situs ChEMBL. Clustering dilakukan terhadap fingerprint molekuler inhibitor DPP-4 yang diperoleh dari fitur SMILES (Simplified Molecular Input Line Entry System). Metode MACCS (Molecular Access System) Keys, ECFP (Extended Connectivity Fingerprint) diameter 4 dan 6, dan FCFP (Functional Class Fingerprint) diameter 4 dan 6, digunakan untuk membangun lima dataset fingerprint untuk proses clustering. Prosedur clustering diawali dengan menentukan jumlah klaster dengan menghitung nilai Koefisien Silhouette sebagai metode evaluasi klaster. Penerapan algoritma K-Modes clustering dengan Levenshtein distance pada 2053 molekul inhibitor DPP-4 menghasilkan nilai Koefisien Silhouette maksimal dari dataset MACCS sebesar 0.3947 dengan jumlah klaster 1258. Pemilihan molekul berdasarkan kriteria nilai logP dan aturan Lipinskis Rule of 5 menghasilkan 778 molekul inhibitor DPP-4 dari semua dataset dengan 298 molekul inaktif dan 480 molekul aktif dan nilai logP berkisar antara -1.67 sampai dengan 4.97.


P value criteria. 2053 DPP-4 inhibitor molecules obtained from the ChEMBL website. Clustering was carried out on the molecular fingerprint obtained from the SMILES feature. The MACCS Keys, ECFP (diameter 4 and 6), and FCFP (diameter 4 and 6) methods were used to construct fingerprint datasets for the clustering process. The clustering procedure begins by determining the number of clusters by calculating the Silhouette Coefficient value. The application of the K-Modes clustering with Levenshtein distance to 2053 DPP-4 inhibitor molecules resulted in the maximum Silhouette Coefficient value of the MACCS dataset of 0.3947 with the number of clusters 1258. Selection of molecules based on logP value criteria and Lipinskis Rule of 5 resulted in 778 DPP-4 inhibitor molecules. of all the datasets with 298 inactive molecules and 480 active molecules and the logP value ranged from -1.67 to 4.97.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library