Nurul Srianda Putri
Abstrak :
Seiring dengan pesatnya perkembangan volume data, kebutuhan akan data yang machine-readable tidak bisa dihindari. Akibatnya, penggunaan struktur data knowledge graph semakin populer. Dengan perkembangannya, aspek kualitas dari sebuah knowledge graph perlu diperhatikan, salah satunya adalah knowledge wealth: kekayaan informasi yang terdapat pada suatu knowledge graph. Tingginya knowledge wealth dalam suatu knowledge graph dapat menandakan tingginya kualitas suatu knowledge graph; sebaliknya, tingkat knowledge wealth yang rendah mengindikasikan buruknya kualitas suatu knowledge graph. Namun, belum terdapat cara formal yang mendefinisikan knowledge wealth dan bagaimana mengukurnya serta menganalisisnya. Penelitian ini mengusulkan sebuah framework untuk menganalisis knowledge wealthdan tingkat knowledge imbalance dalam RDF knowledge graph dengan melihat bagaimana knowledge wealth dari sebuah kelas entitas tersebar pada knowledge graph tersebut menggunakan pengukuran statistika dan bantuan visualisasi. Selain itu, framework ini juga membantu untuk mengidentifikasi grup-grup entitas berdasarkan tingkat kekayaan di dalam kelasnya, menemukan bentuk distribusi yang paling mendekati distribusi knowledge wealth, melakukan pengelompokkan kelas-kelas entitas berdasarkan bentuk distribusi knowledge wealth, hingga mendeteksi bias pada sebuah knowledge graph. Untuk mengevaluasi framework ini, dilakukan studi kasus pada beberapa kelas entitas di Wikidata. Diharapkan hasil dari penelitian ini dapat membantu dalam meneliti knowledge wealth pada knowledge graph serta dimanfaatkan untuk mengoptimalkan usaha pengeditan dan pengembangan proyek knowledge graph oleh para kontributornya.
......Along with the rapid development of data volumes, the need for machine-readable data is inevitable. As a result, the use of knowledge graph data structures becomes more popular. With its development, quality aspects of a knowledge graph need to be considered, one of which is knowledge wealth: the amount of information contained in a knowledge graph. A high level of knowledge wealth in a knowledge graph may indicate the high quality of a knowledge graph; conversely, a low level of knowledge wealth can be a sign of poor quality of a knowledge graph. However, there is no formal way to define knowledge wealth and how to measure and analyze it. This study proposes a framework to analyze knowledge wealth and the level of knowledge imbalance in the RDF knowledge graph by seeing how the knowledge wealth of an entity class is spread over the knowledge graph using statistical measures and visualization. In addition, this framework also helps to identify entity groups based on the level of wealth in their class, finds the best theoretical distribution that fits best to knowledge wealth distribution, performs clustering on classes based on the shape of knowledge wealth distribution, and detects bias in a knowledge graph. To evaluate this framework, some use cases were conducted on several classes on Wikidata. It is hoped that the results of this study can assist in researching knowledge wealth in the knowledge graph and be used to optimize the efforts of editing and developing knowledge graph projects by the contributors.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library