Ditemukan 5 dokumen yang sesuai dengan query
Hafizh Rifqi Saputra
"Penelitian ini berfokus pada klasifikasi emosi menggunakan jaringan saraf buatan (Deep Learning) dengan memanfaatkan sinyal elektroensefalografi (EEG). Emosi manusia merupakan aspek penting dalam interaksi manusia-komputer, dan pengklasifikasian emosi secara akurat dapat meningkatkan kemampuan penerapan teknologi dalam berbagai aplikasi. Sampel sinyal EEG yang digunakan pada penelitian ini berasal dari dataset SEED-V. Sampel data memiliki 62 kanal elektroda dengan 5 jenis klasifikasi emosi yaitu Sedih, Senang, Netral, Jijik, Takut. Sinyal EEG kemudian diolah dan diurai menjadi 5 jenis band yaitu alpa, beta, teta, delta, dan gamma. Sinyal terdekomposisi akan diolah untuk mengekstrak fitur menggunakan diferensial entropi yang kemudian ditransformasi menjadi data 2 dimensi. Model CNN digunakan sebagai algoritma klasifikasi untuk mendeteksi pola-pola kompleks dalam sinyal EEG. Dilakukan pengaturan beberapa parameter dari model hingga didapatkan hasil pengujian yang optimal. Dari hasil pengujian menunjukkan bahwa model CNN yang dikembangkan mampu mengklasifikasikan emosi dengan tingkat akurasi yang cukup tinggi dibandingkan dengan metode klasifikasi lainnya. Dari hasil evaluasi yang dilakukan model yang dikembangkan memiliki nilai akurasi sebesar 87.5%, tak hanya itu pada penelitian ini menampilkan efek ketidakseimbangan jumlah kelas serta teknik penyeimbangan yang dilakukan.
This research focuses on emotion classification using artificial neural networks (CNNs) utilizing electroencephalography (EEG) signals. Human emotions are an important aspect of human-computer interaction, and accurately classifying emotions can improve the applicability of technology in various applications. The EEG signal samples used in this study come from the SEED-V dataset. The data sample has 62 electrode channels with 5 types of emotion classifications, namely Sad, Happy, Neutral, Disgust, Fear. The EEG signal is then processed and decomposed into 5 types of bands alpha, beta, theta, delta, and gamma. The decomposed signal will be processed to extract features using Differential Entropy and then transformed into 2-dimensional data. CNN model is used as a classification algorithm to detect complex patterns in EEG signals. Tunning is done for several parameters of the model until optimal test results are obtained. The test results show that the CNN model developed is able to classify emotions with a fairly high level of accuracy compared to other classification methods. From the evaluation results, the developed model has an accuracy value of 87.5%, Furthermore, this study shows the effects of class size imbalance and the balancing techniques used. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ajmal Kurnia
"Code-mixing adalah sebuah fenomena pengunaan dua atau lebih bahasa dalam suatu percakapan. Fenomena ini semakin banyak digunakan oleh pengguna internet Indonesia yang mencampur bahasa Indonesia-Inggris. Normalisasi teks code-mixed ke dalam satu bahasa perlu dilakukan agar kata-kata yang ditulis dalam bahasa lain dalam teks tersebut dapat diproses dengan efektif dan efisien. Penelitian ini melakukan normalisasi teks code-mixed pada bahasa Indonesia-Inggris dengan menerjemahkan teks ke dalam bahasa Indonesia. Penulis melakukan pengembangan pada pipeline normalisasi code-mixed dari penelitian sebelumnya sebagai berikut: melakukan rekayasa fitur pada proses identifikasi bahasa, menggunakan kombinasi ruleset dan penerjemahan mesin pada proses normalisasi slang, dan menambahkan konteks pada proses Matrix Language Frame (MLF) pada proses penerjemahan. Hasil eksperimen menunjukkan bahwa model identifikasi bahasa yang dibuat dapat meningkatkan nilai F1-score 4,26%. Model normalisasi slang yang dibuat meningkatkan nilai BLEU hingga 25,22% lebih tinggi dan menunrunkan nilai WER 62,49%. Terakhir, proses penerjemahan yang dilakukan pada penelitian ini berhasil memperoleh nilai BLEU 2,5% lebih tinggi dan metrik WER 8,84% lebih rendah dibandingkan dengan baseline. Hasil ini sejalan dengan hasil eksperimen keseluruhan pipeline. Berdasarkan hasil eksperimen keseluruhan pipeline yang dibuat oleh penulis dapat meningkatkan secara signifikan performa BLEU hingga 32,11% dan menurunkan nilai WER hingga 33,82% lebih rendah dibandingkan dengan metode baseline. Selanjutnya, penelitian ini juga menganalisis pengaruh dari proses normalisasi teks code-mixed untuk klasifikasi emosi. Proses normalisasi teks code-mixed terbukti dapat meningkatkan performa sistem klasifikasi emosi hingga 12,45% untuk nilai F1-score dibandingkan dengan hanya melakukan tokenisasi dan meningkatkan nilai F1-score hingga 6,24% dibandingkan dengan metode preproses sederhana yang umum digunakan. Hal ini menunjukkan bahwa normalisasi teks code-mixed memiliki pengaruh positif terhadap efektifitas pemrosesan teks, sehingga normalisasi ini penting untuk dilakukan pada task yang menggunakan data code-mixed.
Code-mixing is the mixing of two or more languages in a conversation. The usage of code-mixing has increased in recent years among Indonesian internet users that often mixed Indonesian language with English. Normalization of code-mixed text has to be applied to translate code-mixed text so that the text can be processed effectively and efficiently. This research performed code-mixed text normalization on Indonesian-English text by translating the text to Indonesian language. Author improves existing normalization pipeline from previous research by: (1) feature engineering on language identification, (2) using combination of ruleset and machine translation approach on slang normalization, and (3) adding some context on matrix language frame that used on translation process. Experiment result shows language identification model that developed in this research is able to improve F1-score by 4,26%. Slang normalization model from this research is able to improve BLEU score by 25,22% and lower WER score by 62,49%. Lastly, translation process on this research is able to improve BLEU score by 2,5% and lower WER score by 8,84% compared to baseline. Experiment results on the entire normalization pipeline shows similar results. The result shows the new pipeline is able to significantly improves previous pipeline by 32,11% on BLEU metric and reduces WER by 33,82% compared to baseline normalization system. This research also tried to analyze the effect of code-mixed text normalization process on emotion classification. Code-mixed text normalization is able to improve evaluation result of emotion classification model by 12,45% on F1-score compared to tokenization only preprocessing data and 6,24% compared to common text preprocessing method. This result shows that the code-mixed text normalization has positive effect to text processing and also shows the importance to perform this normalization when using code-mixed data."
Depok: Fakultas Ilmu Kompter Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership Universitas Indonesia Library
Mufiedah
"Penelitian mengenai klasifikasi emosi manusia sudah berlangsung lama. Pada umumnya yang dikembangkan adalah algoritma pengklasifikasiannya dengan menggunakan dataset EEG laboratory-grade yang sudah tersedia secara bebas. Penelitian ini bertujuan membuat dataset klasifikasi emosi manusia berbasis peranngkat EEG komersil. Responden direkrut secara online dan yang memenuhi kriteria diminta untuk menonton 6 video stimuli emosi sambil direkam aktivitas kelistrikan otaknya menggunakan perangkat EEG komersil. Tiap video stimuli diperuntukkan untuk memancing emosi yang berbeda, yaknik emosi sedih, takut, jijik, marah, tenang, dan senang. Responden juga diminta unutk mengisi kuesioner untuk tiap video stimuli yang ditonton. Dari 27 responden yang direkam data EEG-nya, hasil rekam dari 3 responden harus dieliminasi karena kualitas hasil rekam yang buruk. Hasil analisa kuesioner menunjukkan bahwa sebagian besar video stimuli sudah berhasil memancing emosi responden sesuai dengan tujuannya. Sedangkan hasil rekam signal EEG dibuat dataset untuk melatih algoritma Deep Learning model Recurrent Neural Network (RNN) untuk klasifikasi emosi manusia. Setelah melewati 16 epoch dan tidak ada perbaikan sampai epoch ke-46, nilai akurasi yang dicapai adalah sebesar 33%.
The majority of studies on the classification of human emotions have relied on the analysis of pre-existing datasets. We generated a dataset using consumer-grade EEG devices, which could be a big step forward for EEG research. Respondents were recruited online based on specific criteria and asked to watch a series of six videos while recording their brain's electrical activity using an EEG device and asked to complete a questionnaire for each video they watched. Out of the 27 respondents whose EEG data were recorded, the recordings from 3 respondents had to be eliminated due to the poor quality of the recordings. The results of the questionnaire analysis show that most of the video stimuli have succeeded in evoking the intended respondents’ emotions. Meanwhile, the EEG signal recording results are made into a dataset to train the Deep Learning algorithm using Recurrent Neural Network (RNN) method for the classification of human emotions. After passing 16 epochs and no improvement until the 46th epoch, the accuracy value achieved is 33%."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Nabila Dita Putri
"Saat ini, dataset yang tersedia untuk melakukan analisis emosi di Indonesia masih terbatas, baik dari segi jumlah data, cakupan emosi, serta sumbernya. Pada penelitian ini, peneliti membangun dataset besar untuk tugas analisis emosi pada data teks berbahasa Indonesia, di mana dataset ini dikumpulkan dari berbagai domain dan sumber. Dataset ini mengandung 33 ribu teks, yang terdiri dari tweet yang dikumpulkan dari Twitter, serta komentar unggahan yang dikumpulkan dari Instagram dan Youtube. Domain yang dicakup pada dataset ini adalah domain olahraga, hiburan, dan life chapter. Dataset ini dianotasi oleh 36 annotator dengan label emosi fine-grained secara multi-label, di mana label emosi yang digunakan ini merupakan hasil dari taksonomi emosi baru yang diusulkan oleh peneliti. Pada penelitian ini, peneliti mengusulkan taksonomi emosi baru yang terdiri dari 44 fine-grained emotion, yang dikelompokkan ke dalam 6 basic emotion. Selain itu, peneliti juga membangun baseline model untuk melakukan analisis emosi. Didapatkan dua baseline model, yaitu hasil fine-tuning IndoBERT dengan f1-score micro tertinggi sebesar 0.3786, dan model hierarchical logistic regression dengan exact match ratio tertinggi sebesar 0.2904. Kedua baseline model tersebut juga dievaluasi di lintas domain untuk dilihat seberapa general dan robust model yang telah dibangun.
Currently, no research in Indonesia utilises fine-grained emotion for emotion analysis. In addition, the available datasets for analysing emotions still need to be improved in terms of the amount of data, the range of emotions, and their sources. In this study, researchers built a large dataset for analysing emotion. This dataset contains 33k texts, consisting of tweets collected from Twitter and comments collected from Instagram and Youtube posts. The domains covered in this dataset are sports, entertainment, and life chapter. Thirty-six annotators annotated this dataset with fine-grained emotion labels and a multi-label scheme, where the emotion labels resulted from a new emotion taxonomy proposed by the researcher. In this study, the researchers propose a new emotion taxonomy consisting of 44 fine-grained emotions which are grouped into six basic emotions. Two baseline models were obtained, the first one is the fine-tuned IndoBERT model, which achieved the highest f1-score micro of 0.3786, and the second one is hierarchical logistic regression model, which achieved the highest exact match ratio of 0.2904. Both baseline models were also evaluated to determine their cross-domain applicability. The dataset and baseline models that are produced in this study are expected to be valuable resources for future research purposes."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Kaysa Syifa Wijdan Amin
"Saat ini, dataset yang tersedia untuk melakukan analisis emosi di Indonesia masih terbatas, baik dari segi jumlah data, cakupan emosi, serta sumbernya. Pada penelitian ini, peneliti membangun dataset besar untuk tugas analisis emosi pada data teks berbahasa Indonesia, di mana dataset ini dikumpulkan dari berbagai domain dan sumber. Dataset ini mengandung 33 ribu teks, yang terdiri dari tweet yang dikumpulkan dari Twitter, serta komentar unggahan yang dikumpulkan dari Instagram dan Youtube. Domain yang dicakup pada dataset ini adalah domain olahraga, hiburan, dan life chapter. Dataset ini dianotasi oleh 36 annotator dengan label emosi fine-grained secara multi-label, di mana label emosi yang digunakan ini merupakan hasil dari taksonomi emosi baru yang diusulkan oleh peneliti. Pada penelitian ini, peneliti mengusulkan taksonomi emosi baru yang terdiri dari 44 fine-grained emotion, yang dikelompokkan ke dalam 6 basic emotion. Selain itu, peneliti juga membangun baseline model untuk melakukan analisis emosi. Didapatkan dua baseline model, yaitu hasil fine-tuning IndoBERT dengan f1-score micro tertinggi sebesar 0.3786, dan model hierarchical logistic regression dengan exact match ratio tertinggi sebesar 0.2904. Kedua baseline model tersebut juga dievaluasi di lintas domain untuk dilihat seberapa general dan robust model yang telah dibangun.
Currently, no research in Indonesia utilises fine-grained emotion for emotion analysis. In addition, the available datasets for analysing emotions still need to be improved in terms of the amount of data, the range of emotions, and their sources. In this study, researchers built a large dataset for analysing emotion. This dataset contains 33k texts, consisting of tweets collected from Twitter and comments collected from Instagram and Youtube posts. The domains covered in this dataset are sports, entertainment, and life chapter. Thirty-six annotators annotated this dataset with fine-grained emotion labels and a multi-label scheme, where the emotion labels resulted from a new emotion taxonomy proposed by the researcher. In this study, the researchers propose a new emotion taxonomy consisting of 44 fine-grained emotions which are grouped into six basic emotions. Two baseline models were obtained, the first one is the fine-tuned IndoBERT model, which achieved the highest f1-score micro of 0.3786, and the second one is hierarchical logistic regression model, which achieved the highest exact match ratio of 0.2904. Both baseline models were also evaluated to determine their cross-domain applicability. The dataset and baseline models that are produced in this study are expected to be valuable resources for future research purposes."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library