Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Luthfan Hawari Putranto
"ABSTRAK
Analisis karakteristik aerodinamika merupakan salah satu tahapan yang paling menentukan dalam mendesain sebuah kendaraan yang dapat terbang. Terdapat dua metode untuk mendapatkan karakteristik aerodinamika sebuah desain, yaitu dengan cara eksperimental menggunakan wind tunnel atau dengan cara simulasi menggunakan alat bantu software komputer dengan basis ComputationalFluidDynamics CFD. Namun untuk melakukan eksperimen dengan wind tunnel, dibutuhkan biaya dan waktu yang banyak. Sehingga pada penelitian ini digunakan metode simulasi menggunakan software CFD ANSYS 18.2 dengan solver CFX. Simulasi ini bertujuan untuk mendapatakan nilai-nilai aerodinamika koefisien gaya angkat lift dan gaya hambat drag terhadap kenaikan sudut serang dari geometri uji. Simulasi dilekukan pada keadaan atmosfir sealevel dengan tekanan relatif 0 Pa dan kerapatan utara atau densitas sebesar 1.225 kg/m3 serta kecepatan aliran sebesar 83.3 m/s. sudut serang dimasukkan dengan mengatur komponen kecepatan pada inlet serta opening farfield sesuai sudut terhadap sumbu x dan y masing-masing. Model turbulensi diatur menjadi model SST atau shear stress transport. Untuk mengetahui lebih detail tentang karakteristik gaya hambat pada masing-masing komponen, Simulasi yang dilakukan dibagi menjadi dua kali dengan perbedaan kelengkapan komponen pada konfigurasi keseluruhan. Simulasi satu menggunakan konfigurasi tanpa komponen fender dan roda beserta sambungan suspensinya dan simulasi dua dilakukan menggunakan konfigurasi dengan keseluruhan komponen. Hal ini dapat diketahui merupakan pengaruh desain yang kurang baik pada komponen-kompoenen penunjang tersebut. Hasil simulasi kemudian dapat dijadikan dasar untuk iterasi berikutnya agar desain lebih optimum.

ABSTRACT
Aerodynamics analysis is one of the major components on flying vehcle design process. There are two methods in order to obtain the aerodynamics characteristics of a flying vehicle, one of which is by experimental approach in use of wind tunnel and the other is by simulation approach aided by computer software based that is widely known as Computational Fluid Dynamics CFD. Nevertheless, using wind tunnel is costly and time consuming to begin with. Therefore in order to save time and money, this study of conceptual design of a flying vehicle uses simulation approach with an aid of ANSYS 18.2 with CFX Solver. This simulation goal is to obtain the aerodynamics forces acting on the conceptual design of flying vehicle such as lift coefficient and drag coefficient with changing angles of attack. The data collected then is used to construct graphic to show trends of the aerodynamic performances of the design. The simulation is set to sea level condition with relative pressure 0 Pa and density of 1.225 kg m3 also with speed of flow of 83.3 m s. Setting Angles of Attack is by mean of setting the velocity cartesian components on the inlet and opening farfield boundary conditions with each corresponded x and y values with the equations of trigonometry. Turbulence model used in this study is Shear Stress Transport. The simulation will be devided into 2 parts which one is with less component and the other is full configuration with all components attached. The results show that the components affect significantly to the total drag. The result obtained will then be used to do another iterations to optimize the design aerodynamically."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wanda Pratomo
"ABSTRAK
Kendaraan terbang yang memiliki kemampuan tinggal landas dan mendarat secara vertikal vertical take-off and landing / VTOL akan meningkatkan fleksibilitas penggunaan dan memudahkan penggunanya dikarenakan dapat lepas landas dan mendarat dari lebih banyak tempat semisal lapangan atau bahkan pelataran parkir. Sistem propulsi khusus untuk menghasilkan gaya angkat vertikal perlu didesain sedemikian rupa untuk efisiensi bentuk dan bobot kendaraan secara keseluruhan. Gagasan sistem propulsi VTOL ini adalah dengan menggabungkan sistem propulsi fan pada sistem suspensi pada roda kendaraan yang melekat pada dudukan wishbone. Dengan demikian diperlukan mekanisme dan desain khusus yang memungkinkan agar dudukan wishbone dapat mengarahkan sistem propulsi fan kearah bawah saat tinggal landas atau mendarat dan tentunya dapat memenuhi fungsinya sistem pendukung roda kendaraan sebagai penggerak dan kemudi saat kendaraan bergerak di darat. Konsep Sistem Propulsi VTOL Menggunakan Constant Velocity Joint yang akhirnya dipilih sebagai Final Desain Mekanisme Perubahan Arah Sistem Suspensi pada Roda sebagai Sarana Sistem Propulsiuntuk Tinggal Landas Vertikal pada Kendaraan Terbang karena konsep tersebut merupakan konsep yang paling sesuai dengan kebutuhan-kebutuhan desain dan paling memungkinkan untuk diterapkan. Variasi Kombinasi Bentuk Desain Upper Wishbone tanpa Penguat Menggunakan Material AISI 1040 adalah kombinasi paling optimal dengan nilai safety factor 1,25 pada kondisi terbang dan 1,47 pada saat berjalan di darat. Dan bentuk desain tersebut lebih sederhana yang tentunya akan berdampak pada lebih rendahnya nilai drag value, lebih ringan dan lebih murahnya biaya produksinya.

ABSTRACT
Flying car with vertical take off and landing VTOL capabilities will increase the flexibility of use and make it easier for users to take off and land from more places such as a field or even a parking lot. Special propulsion systems for generating vertical lift force need to be designed in such a way as to shape efficiency and reduce vehicle weight. The idea of this VTOL propulsion system is to combine the fan propulsion system in the vehicle wheel system attached to the wishbone stand holder. Thus, special mechanisms and designs are required that allow the wishbone holder to direct the fan downward propulsion system on take off or landing and can certainly fulfill its function vehicle wheel support system as driving and steering as the vehicle moves on land. The Concept of VTOL Propulsion System Using Constant Velocity Joint was finally chosen as the Final Design of Mechanism of Changing the Direction of the Suspension System on Wheels as an Instrument for Vertical Take Off and Landing Propulsion System on Flying Car because the concept is the concept that best suits the design needs and is most likely to be applied. Variation Combination Shape Upper Wishbone Design without Reinforcement Using Materials AISI 1040 is the most optimum combination with a 1.25 safety factor on flying conditions and 1.47 on on ground. And the shape of the design is simpler which will certainly impact on the lower drag value, lighter and cheaper production costs."
2018
T51494
UI - Tesis Membership  Universitas Indonesia Library
cover
Sudirja
"Penelitian ini membahas tentang metode pembuatan bodi kendaraan terbang dan analisa dari material yang dihasilkan. Konten penelitian ini meliputi literatur, metode penelitian, dan hasil penelitian. Fokus dari penelitian ini adalah pada teknik pembuatan bodi kendaraan terbang dengan cara menyemprot cetakan bodi yang telah dilapisi kain elastis menggunakan resin. Jenis kain elastis yang digunakan untuk penelitian ini adalah kain yang memiliki kemampuan tahan air dan kain yang menyerap air. Ring cetakan digunakan sebagai rangka dan kain elastis untuk membentuk permukaan kemudian disemprotkan oleh resin agar menjadi lebih keras. Setelah kain elastis mengeras maka fiberglass/karbonfiber dan lapisan microsphere akan ditambahkan untuk memperkuat material. Kemudian uji tarik dan uji bending dilakukan untuk mengetahui kekuatan dan kekakuan material ini. Dari pengujian diperoleh bahwa spesimen GRVeWP kain tahan air memiliki kekuatan yang lebih baik daripada spesimen GRVeWP kain penyerap air dengan tegangan tarik 5 [49] Kg / mm [MPa], perpanjangan 2,26 , dan von misses 1.718e 008 N / m sedangkan kain elastis penyerap air dengan 4 [39 ] Kg / mm [MPa] untuk tegangan tarik, perpanjangan 2,24 , dan von misses 2.736e 008 N / m . Kemudian nilai kuat tarik material komposit hasil dari metode penyemprotan rangka kain elastis menggunakan resin ripoksi vinyl ester type 804 dengan material carbon fiber double layer CRVe adalah sebesar 243,729 MPa dengan beban maksimal 3425.98 N sedangkan apabila ditambah dengan lapisan microsphere CRVeM kuat tariknya menjadi 111,014 MPa dengan beban maksimal 4787,33 N. Untuk hasil uji bending specimen CRVeM memiliki modulus elastisitas yang lebih tinggi yaitu sebesar 9,34493 GPa dengan regangan yang lebih kecil yaitu 1,17423 sedangkan untuk specimen CRVe sebesar 7,42774 GPa dengan regangan lebih besar yaitu 2,48458.

This study discusses about the method of flying car's body manufacturing and the analysis of the material product. The content of this study includes literature, research methods, and research results. The focus of this research is on the technique of manufacturing the body of a flying car by spraying molded body that has been coated with elastic fabric using resin. The type of elastic fabric used for this research is a cloth that has waterproof properties and a water absorbing properties fabric. Ring mold is used as a frame and elastic fabric to form a surface then sprayed by resin to make it harder. Once the elastic fabric is hardened then fiberglass carbonfiber and microsphere layers will be added to strengthen the material. Then a tensile test and bending test are performed to determine the strength and rigidity of this material. From the test it was found that the GRVeWP specimen waterproof cloth had better strength than the specimen GRVeWP water absorbent cloth with tensile stress 5 49 Kg/mm MPa, elongation 2.26, and von misses 1.718e 008 N m while the water absorbent cloth with 4 39 Kg mm MPa for tensile stress, 2.24% elongation, and von misses 2.736e 008 N m. Then the value of tensile strength of composite material resulting from this spraying method using vinyl ester type 804 ripoksi resin with carbon fiber double layer CRVe material is 243,729 MPa with maximal load 3425.98 N whereas when added with microsphere layer CRVeM its tensile strength becomes 111.014 MPa with maximum load 4787.33 N. For bending test specimen CRVeM has a higher elastic modulus that is equal to 9.34493 GPa with a smaller strain that is 1.17423% while for CRVe specimen of 7.42774 GPa with a larger strain of 2.48458%."
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50637
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Naufal Azhar Putera Mastiawan
"ABSTRAK
Pertumbuhan penduduk yang tinggi menimbulkan dampak pada berbagai aspek kehidupan terutama kemacetan. Berbagai solusi mengatasi kemacetan sudah banyak ditawarkan. Namun, tetap saja kemacetan masih merupakan masalah yang belum terselesaikan. Bayangkan ada sebuah mobil yang dapat beroperasi di udara juga seukuran mobil. Namun permasalahan selanjutnya adalah bagaimana memanfaatkan ruang terbatas pada mobil sebagai penyimpanan bahan bakar agar kendaraan ini dapat menempuh jarak jauh. Tanpa menambah dimensi dan berat kendaraan, efisiensi dapat diraih dengan mengurangi drag. Perancangan sistem retraksi roda dapat mengurangi parasite drag hingga 24. Perancangan ini juga berbicara mengenai bagaimana sebuah mekanisme retraksi dapat mengakomodasi seluruh sistem roda termasuk suspensi, wishbone, sistem pengaman dan sistem kemudi pada roda depan. Hasil dari rancangan ini menghasilkan kebutuhan akan sebuah pompa hidrolik dengan tekanan minimal 11.191 bar dan laju alir 0.136 lpm.

ABSTRACT
High population growth has an impact on various aspects of life, especially traffic congestion. Many solutions to overcome traffic congestion have been offered. However, traffic congestion is still an unsolved problem. Imagine there is a car that can operate on sky as well with the size of a car. But the next problem is how to maximize the limited space of vehicle as fuel storage so that it can travel a long distance. Without increasing size and weight to the vehicle, efficiency can be achieved by reducing drag. Designing a wheel retraction system can reduce parasite drag up to 24. This design also talks about how a retraction mechanism can accommodate the entire wheel system including suspension, wishbone, safety system and steering system on the front wheels. The result of this design is a hydraulic pump with minimum pressure of 11.191 bar and flow rate of 0.136 lpm."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library