Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Saragih, Glori Stephani
Abstrak :
ABSTRAK
Pada tahun 1994, Turki mengalami krisis keuangan yang sangat berpengaruh negatif terhadap sektor perbankan, sehingga banyak bank yang dinyatakan bangkrut. Kebangkrutan bank memiliki dampak yang besar pada sektor riil dan rumah tangga. Oleh karena itu, penting untuk memprediksi kebangkrutan bank. Tahun 2009, Boyacioglu, Kara dan Baykan telah memprediksi kebangkrutan bank di Turki pada periode 1994-2004 dengan menggunakan CAMELS sebagai variabel prediktor dan Artificial Neural Network, Support V ector Machine serta metode statistik peubah ganda sebagai metode klasifikasi. Namun, pada penelitian ini akan dibuat pembaruan dengan menggunakan random forest. Dari hasil yang didapat, random forest memiliki akurasi 100 performa training dan 94 performa testing dengan mengunakan 20 rasio. Salah satu kelebihan random forest adalah perhitungan variabel penting, apabila dibentuk model dengan menggunakan variabel prediktor terpilih didapat hasil 100 performa training dan 96 performa testing dengan menggunakan 6 rasio. Jika dibandingkan dengan model yang digunakan pada makalah Boyaciaglu, Kara dan Baykan 2009, meskipun pada performa testing random forest tidak memiliki akurasi yang lebih tinggi dari Learning Vector Quantization dengan performa testing 100, namun tingkat akurasinya tidak terlalu berbeda jauh dan random forest tidak memerlukan normalisasi. Pada penelitian ini didapat enam variabel yang paling penting, yaitu: CA2, E1, CA3, SMR1, SMR2 dan E2.
ABSTRACT
In 1994, there was a financial crisis in Turkey. Many banks were declared failed because of the negative impact from the crisis. The failure of individual banks has a huge impact on the real sector and households. Therefore, it is important to predict bank failure. The 2009, Boyacioglu, Kara, and Baykan had predicted bank failures in Turkey, during the period 1994 2004 using CAMELS as a predictor variable and Artificial Neural Network, Support Vector Machine, multivariate statistical methods as classifier method. However, in this research we will make novelty by using random forest. Based on our results, random forest has accuracy 100 training performance and 94 testing performance with used 20 ratios. One of advantage in random forest is variable importance measure, if we build model again with variable predictor selection, the result are accuracy 100 training performance and 96 testing performance with used 6 ratios. If we compare with Boyacioglu, et.al 2009, even random forest does not have accuracy more than Learning Vector Quantization with 100 testing performance, but its accuracy is not far away and doesn rsquo t need normalization. In this research we got CA2, E1, CA3, SMR1, SMR2 and E2 are six most important variables.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Nadhifa
Abstrak :
Bank berperan penting dalam sistem perekonomian karena memberikan kontribusi yang signifikan melalui fasilitasi kegiatan usaha. Oleh karena itu, kegagalan dari bank bisa mengakibatkan kerusakan pada sistem keuangan tidak hanya pada suatu negara tetapi juga secara global. Meskipun begitu, kebangkrutan tidak terjadi secara tiba-tiba, tapi terdapat indikasi awal yang dapat diketahui dengan cara meneliti laporan keuangan dari sebuah bank secara cermat. Penelitian ini bertujuan untuk mencari model prediksi kebangkrutan bank terbaik untuk memberi peringatan dini kepada regulator agar efek negatif yang diakibatkan oleh kebangkrutan bank pada sistem perekonomian dapat dikurangi atau bahkan dihindari. Akan digunakan metode berupa supervised machine learninghasil modifikasi dari Support Vector Machinesdengan menambahkan fungsi fuzzy membershipyang biasa disebut Fuzzy Support Vector Machines FSVM . Akan digunakan dua jenis kernel, yaitu kernel RBF dan kernel polinomial sebagai pembanding dalam pembentukan model. Machine learningdipilih sebagai metode untuk prediksi kebangkrutan karena hasil yang didapatkan dapat jauh lebih cepat jika dibandingkan dengan menggunakan metode statistika tradisional. Pembentukan model dan penghitungan nilai akurasi prediksi akan dilakukan dengan menggunakan dataset berisikan 65 bank di Turki dari publikasi tahunan ldquo;Banks in Turkey rdquo; yang diterbitkan oleh Banks Association of Turkey BAT . Tiap data dari 65 bank yang dikumpulkan dari tahun 1997 mdash;2004 memiliki informasi berupa 20 rasio keuangan yang dikelompokkan ke dalam enam kelompok fitur berdasarkan sistem penilaian CAMELS. Selain itu, untuk meningkatkan nilai akurasi dari prediksi, akan digunakan seleksi fitur chi-squareuntuk menyaring fitur-fitur yang tidak relevan dari ke-20 fitur dalam dataset. ...... The bank plays a big role on economic system as they significantly contribute through the facilitation of business. Hence, the collapse of several banks can cause a huge damage to financial systems not only in a country but also globally. Nonetheless, bankruptcy doesn rsquo t happen suddenly, but there are early indications that can be seen by investigating the financial statement of a bank. In this research, we aim to find the best bankruptcy prediction model to give an early warning for regulators so that it can help them to prevent or lessen the negative effects on economic systems. This research will be performing supervised based machine learning that is a modification of SVM by adding fuzzy membership function called Fuzzy Support Vector Machines FSVM . The experiment will also be using kernel RBF and kernel polynomial to construct the model. We chose machine learning for bankruptcy prediction because it can give faster result rather than traditional statistical method. We will be measuring prediction accuracy using a dataset that consists of 65 Turkish banks from the annual publication ldquo Banks in Turkey rdquo issued by the Banks Association of Turkey BAT . Each of the 65 banks that we collected from 1997 mdash 2004 has information of a total of 20 financial ratios with six feature groups based on CAMELS rating system. Furthermore, to improve the accuracy prediction, we also perform chi square feature selection to filter any irrelevant features of total 20 features in our dataset.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tinar Pamuji Waskita
Abstrak :
ABSTRAK
Hujan menjadi salah satu parameter cuaca yang paling banyak diperhatikan karena fenomena kejadiannya secara signifikan dapat mempengaruhi aktivitas manusia, termasuk dalam bidang pertanian, perkebunan, perikanan, transportasi dan lain-lain. Selain itu informasi curah hujan sangat penting untuk melakukan analisis cuaca, khususnya dalam menganalisis kejadian banjir yang disebabkan oleh hujan lebat sehingga perlu adanya informasi terkait curah hujan yang tepat dan akurat. Penelitian ini bertujuan untuk mendapatkan model estimasi curah hujan yang optimal dengan beberapa metode machine learning. Machine learning merupakan aplikasi artificial intelligence (AI) yang menyediakan sistem pembelajaran bagi mesin untuk belajar secara otomatis tanpa diperintahkan secara eksplisit. Machine learning yang digunakan dalam penelitian ini adalah multi-layer perceptron (MLP), support vector regression (SVR) dan random forest (RF). Data radar dan jarak dari radar digunakan sebagai input model, untuk data target/validasi digunakakan data pengamatan hujan otomatis disekitar pengamatan Radar Polarisasi Tunggal di Yogyakarta. Hasil model akan dievaluasi nilai galat dan tingkat akurasinya, sehingga didapatkan metode machine learning yang optimal dalam mengestimasi curah hujan
ABSTRACT
Rain is one of the weather parameters that is the most widely considered because the phenomenon of its occurrence can significantly affect human activities, including in agriculture, plantations, fisheries, transportation and others. In addition, rainfall information is very important to do weather analysis, especially in analyzing the occurrence of floods caused by heavy rains so there is a need for accurate and accurate rainfall related information. This study aims to obtain an optimal rainfall estimation model with several machine learning methods. Machine learning is an artificial intelligence (AI) application that provides a learning system for machines to learn automatically without explicit instruction. The machine learning used in this study is multi-layer perceptron (MLP), support vector regression (SVR) and random forest (RF). Radar data and distance from the radar are used as input models, for target/validation data used automatic rain observation data around the Single Polarization Radar observation in Yogyakarta. The results of the model will be evaluated for error values ​​and their level of accuracy, so that an optimal machine learning method is obtained in estimating rainfall.
2020
T55285
UI - Tesis Membership  Universitas Indonesia Library