Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Ulfa Herdyani
"Di Universitas Indonesia, tengah dikembangkan sebuah sistem penilaian esai secara otomatis berbasis web yang bernama SIMPLE-O. Sistem ini masih memilik beberapa kekurangan, yang salah satunya adalah ketidakmampuan sistem untuk mendeteksi kalimat negasi. Skripsi ini merancang dan kemudian menguji modul tambahan yang dapat mendeteksi kalimat negasi pada sistem SIMPLE-O. Modul tambahan tersebut mendeteksi kata negasi (“tidak” dan “bukan”) kemudian menggabungkannya dengan kata yang akan dinegasikan dengan kata hubung (-). Bila kata kunci atau kata bobot yang dinegasikan, maka nilai user tidak akan bertambah. Program-program yang diujikan adalah program SIMPLE-O yang asli, program yang dapat mendeteksi negasi dengan input yang dipecah per 10 kata (Program Deteksi Negasi 1), dan program yang dapat mendeteksi negasi dengan input yang dipecah per kalimat (Program Deteksi Negasi 2). Nilai hasil proses program-program tersebut dibandingkan dengan nilai dari human rater. Dari analisis yang dilakukan didapatkan kesimpulan bahwa program deteksi negasi dapat diimplementasikan ke dalam sistem SIMPLE-O. Selain itu, program negasi yang paling baik untuk diimplementasikan adalah Program Deteksi Negasi 2.

In Universitas Indonesia, a web based automatic essay grading system named SIMPLE-O is currently being developed. This system still has some deficiencies, one of them is system’s inability to detect negation sentences. This essay devises and then tests additional module that can detect negation sentences in SIMPLE-O system. This additional module detects negation words (“tidak” and “bukan”), then combines them with words that will be negated with dash (-). If it’s keywords or weighted words that are negated, user’s score will not increase. The programs that are tested are real SIMPLE-O program, program that can detect negation with input being separated by 10 words (Negation Detection Program 1), and program that can detect negation with input being separated by a sentence (Negation Detection Program 2). Those scores of programs’ process result is compared with human rater scores. From the analysis that has been done, it can be concluded that negation detection program can be implemented into SIMPLE-O’s system. Beside that, the best negation program that can be implemented into SIMPLE-O’s system is Negation Detection Program 2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57628
UI - Skripsi Membership  Universitas Indonesia Library
cover
Karisma Linda Nissa Kusumawati
"Pada skripsi ini telah dilakukan pengujian variasi kata kunci dalam jawaban mahasiswa yang mempengaruhi keakuratan nilai dari penggunaan program SIMPLE-O. Dengan adanya jawaban mahasiswa dalam berbagai variasi maka dapat dilihat pengaruh kata kunci dalam proses penilaian sistem. Kata kunci merupakan kumpulan kata-kata yang dipilih dari jawaban dimana kata-kata tersebut yang mempunyai nilai. Selain itu, terdapat kata bobot yang merupakan kumpulan dari kata kunci yang mempunyai bobot nilai lebih tinggi. Semakin banyak kata kunci yang dimasukkan, maka semakin besar keakuratan nilai pada sistem. Terdapat enam skenario yang digunakan sebagai bahan analisis.
Korelasi waktu penggunaan sistem saat program dimasukkan ke dalam cloud computing berbeda dengan penggunaan sistem saja. Waktu proses penilaian yang dihasilkan oleh sistem lebih cepat dibandingkan waktu proses penilaian saat sistem berada dimasukkan ke dalam cloud computing. Nilai korelasi yang baik adalah nilai korelasi yang mendekati satu. Waktu korelasi yang paling baik pada pengujian skenario pada sistem sebesar 0.97. Sedangkan nilai korelasi pada pengujian skenario pada sistem sebesar 0.22.

In this thesis will discuss some keyword variation affects the accuracy of the students in the program use SIMPLE-O. With the variety of answer?s student in large amounts it can be seen how keywords in the process of the assessment system. Keywords is a collection of selected words from the answers which those words that has a value. In addition, there is the word weight is a collection of keywords that have a higher weight value. Increasingly many keywords entered, the greater accuracy in the system. There are six scenarios used for analysis.
Correlation time when using system in cloud computing has different than using simply system. Time processing in system make a better value than using simply system in cloud computing. Correlation value has a good value when the correlation closed with one. Correlation time in scenario system is 0.97. Whereas correltion value in scenario system is 0.22.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65119
UI - Skripsi Membership  Universitas Indonesia Library