Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Yogi Kurnia
Abstrak :
Tingginya jumlah peserta seleksi beasiswa yang tidak lulus, menyebabkan tidak efisiennya penyelenggaraan kegiatan seleksi beasiswa di LPDP. Berdasarkan data hasil seleksi beasiswa, terlihat bahwa persentase kelulusan peserta sangat rendah tiap tahunnya. Pada tahun 2013 proporsi yang tidak lulus seleksi sebesar 54%, sedangkan pada tahun 2014 dan tahun 2015 meningkat menjadi 85% dan 71%. Secara keseluruhan, terdapat 74% pendaftar beasiswa LPDP yang tidak lulus seleksi beasiswa dari tahun 2013 hingga tahun 2015. Hal ini menyebabkan tingginya biaya yang dikeluarkan untuk pelaksanaan seleksi. Jika LPDP bisa memprediksi peluang kelulusan peserta, maka biaya tersebut bisa dikurangi. Teknik klasifikasi pada data mining merupakan teknik yang tepat untuk permasalahan ini. Metodologi yang digunakan dalam penelitian ini adalah knowledge discovery in databases (KDD). Metodologi ini terdiri dari 5 (lima) langkah, yaitu selection, preprocessing, transformation, data mining, dan interpretation / evaluation. Dataset bersumber dari data formulir pendaftaran beasiswa dan hasil wawancara. Proses pemodelan menggunakan software Rapid Miner dan algoritma decision tree. Model yang dihasilkan dievaluasi menggunakan k-fold cross validation. Hasil penelitian ini yaitu LPDP dapat memprediksi peluang kelulusan peserta seleksi. ......The high number of participants who did not pass the scholarship selection, leading to inefficient operation of the selection of scholarship in the LPDP. Based on data from scholarship selection results, it appears that a very low percentage of graduation of each year. In 2013 the proportion who were not selected by 54%, whereas in 2014 and 2015 increased to 85% and 71%. Overall, there is a 74% LPDP scholarship applicants who did not pass the selection of scholarship from 2013 to 2015. This led to high costs incurred for the implementation of the selection. If LPDP can predict the chances of graduation participants, the cost can be reduced. Classification techniques in data mining is a technique that is appropriate for this problem. The methodology used in this study is a knowledge discovery in databases (KDD). This methodology consists of five (5) steps, namely selection, preprocessing, transformation, data mining, and interpretation / evaluation. Dataset data sourced from the scholarship application form and interview. Process modeling using software Rapid Miner and decision tree algorithm. The resulting model was evaluated using the k-fold cross validation. Results of this study are LPDP can predict the chances of graduation of the selection.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Zalfa Nurfadhilah Haris
Abstrak :
Kemiskinan merupakan salah satu masalah sosial yang masih menjadi perhatian pemerintah. Hampir seluruh negara berkembang memiliki standar hidup yang masih rendah. Salah satu cara untuk mengurangi kemiskinan adalah dengan menganalisis faktor-faktor yang memengaruhi Salah satu metode yang cocok dalam menganalisis tingkat kemiskinan adalah dengan menggunakan Geographically Weighted Regression (GWR). Hal ini dikarenakan dalam model GWR dipertimbangkan aspek spasial yang berbeda-beda untuk masing-masing lokasi pengamatan. Dalam model GWR dilakukan pendekatan analisis regresi yang digunakan untuk memahami hubungan spasial antara variabel-variabel dalam konteks geografi. Hal ini dikarenakan model GWR mempertimbangkan jarak lokasi pengamatan dengan lokasi sekitarnya, model GWR juga mempertimbangkan pembobot pada masing-masing lokasi pengamatan. Daerah yang dekat dengan lokasi pengamatakan mendapatkan pembobot yang lebih besar daripada daerah yang jauh dengan lokasi pengamatan, dalam hal ini penentuan pembobot dalam model GWR bergantung pada bandwidth. Dalam penelitian ini dilakukan analisis dengan mempertimbangkan empat pembobot spasial yaitu fixed gaussian kernel, fixed bisquare kernel, fixed tricube kernel, dan fixed exponential kernel yang diterapkan pada dua bandwidth yaitu bandwidth CV dan bandwidth AIC. Variabel dependen yang digunakan adalah tingkat kemiskinan dan variabel independen yang digunakan adalah rata-rata lama sekolah, upah minimum, tingkat pengangguran, indeks pembangunan manusia, angka harapan hidup dan jumlah penduduk. Hasil dari penelitian ini menunjukkan bahwa pada 118 Kabupaten/Kota di Pulau Jawa memiliki model GWR yang berbeda-beda. Untuk model GWR menggunakan bandwidth CV diperoleh model terbaik dengan menggunakan fixed exponential kernel dengan sembilan kelompok variabel yang signifikan, untuk model GWR menggunakan bandwidth AIC diperoleh model terbaik dengan menggunakan fixed bisquare kernel dengan enam kelompok variabel yang signifikan. ...... Poverty is one of the social issues that continues to be a concern for the government. Almost all developing countries have low living standards. One way to reduce poverty is by analyzing the factors that influence it. One suitable method for analyzing poverty levels is by using Geographically Weighted Regression (GWR). This is because the GWR model considers different spatial aspects for each observation location. In the GWR model, a regression analysis approach is used to understand the spatial relationship between variables in a geographical context. This is because the GWR model considers the distance between the observation location and its surrounding locations. The GWR model also considers weighting for each observation location. Areas close to the observation location are given a higher weight than areas far from the observation location. In this case, the determination of the weight in the GWR model depends on the bandwidth. This research analyzes four spatial weights, namely fixed Gaussian kernel, fixed bisquare kernel, fixed tricube kernel, and fixed exponential kernel, applied to two bandwidths: CV bandwidth and AIC bandwidth. The dependent variable used is the poverty rate, and the independent variables used are average length of schooling, minimum wage, unemployment rate, human development index, life expectancy, and population. The results of this study show that the 118 districts in Java Island have different GWR models. For the GWR model using the CV bandwidth, the best model is obtained using the fixed exponential kernel with nine significant variable groups. For the GWR model using the AIC bandwidth, the best model is obtained using the fixed bisquare kernel with six significant variable groups.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library