Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
cover
Yoyok Dwi Setyo Pambudi
Abstrak :
ABSTRAK
Logam transisi oksida (MxOy,M = Co, Fe, Cu, Zn) menarik untuk dijadikan material baru sebagai anoda baterai ion lithium karena secara umum mempunyai kapasitas spesifik lebih besar dari material grafit. Diantara logam logam transisi tersebut ZnO mempunyai kelebihan karena mempunyai kapasitas teoritis yang yang tinggi sekitar 978 mAh/g atau setara tiga kali dari grafit seperti yang dipakai pada baterai ion lithium dewasa ini. Kelebihan lain dari ZnO adalah tidak beracun, ketersediaannya banyak dan murah dalam preparasi. Selain itu ZnO mempunyai band gap yang lebar (3,37 eV pada suhu kamar), mobilitas elektron tinggi (100 cm2/Vs) dan ikatan energi yang besar (60 meV) sehingga yang telah banyak digunakan di banyak aplikasi seperti semikonduktor, bahan konduktor transparan, biosensor dan bahan anoda dari baterai lithium-ion. Secara khusus, struktur nano ZnO telah menarik banyak perhatian karena sifat unik dan kemungkinan penerapannya di bidang yang luas. Tetapi penerapan material ZnO sebagai anoda baterai ion lithium juga mempunyai kelemahan karena terjadinya ekspansi volume selama proses charge dan discharge yang akan menyebabkan kerusakan material anoda tersebut dan berakibat pada turunnya kapasitas baterai. Maka dilakukan pengendalian morfologi terhadap struktur ZnO dalam bentuk microrods yang ditumbuhkan pada substrat tembaga (Cu foils) dengan menggunakan metode kimia basah atau chemical bath deposition (CBD) pada suhu rendah. Parameter yang diamati adalah keseragaman, densitas dan diameter ZnO microrods hingga didapatkan kondisi optimum untuk pertumbuhan ZnO. Efek annealing temperatur pada pertumbuhan ZnO microrods dan kristalisasi selanjutnya diteliti. Ukuran, keselarasan dan keseragaman ZnO microrods dievaluasi dengan pemindaian mikroskop elektron (SEM dan HRSEM), sedangkan untuk analisis struktural dilakukan dengan teknik X-ray difraksi (XRD). Hasil penelitian menunjukkan bahwa suhu anil berpengaruh secara signifikan terhadap pertumbuhan microrods ZnO. Dengan melalui sejumlah pengujian terhadap struktur dan morfologi di dapatkan bahwa parameter eksperimental yang baik dicapai dengan menggunakan 3 (tiga) lapisan benih, anil pada suhu 150oC dalam waktu 10 menit anil, memberikan diameter rata-rata 218 nm, ukuran kristal 50,16 nm dan densitas 5,05 microrods μm2. Ukuran kristalit terbesar (65,34 nm) diperoleh pada suhu anil pada suhu 100oC dan 10 menit waktu anil. Citra SEM dan HRSEM pada semua sampel yang diuji menunjukkan bahwa ZnO microrods berhasil ditumbuhkan pada substat lembaran tembaga dengan diameter 200 900 nm. Hasil CV memperlihatkan bahwa kapasitas spesifik tertinggi sebesar didapatkan oleh sampel ZnO150 dengan nilai kapasitas spesifik sebesar 811 mAh/gr untuk discharge dan 773 mAh/gr untuk charge pada pengisian densitas arus 0.5 A/g Sedangkan kapasitas spesifik terendah didapat pada sampel ZnO50 dengan nilai kapasitas spesifik sebesar 572 mAh/gr untuk discharge dan 562 untuk charge. Sedangkan untuk ketahanan siklus didapatkan oleh sampel ZnO100 dengan kapasitas retensi 94% pada siklus ke 80 dan ZnO 150 dengan kapasitas retensi 82 %. Dari pengujian rate capabilities, baterai ZnO memiliki kemampuan discharge dan charge dari 0,1 C hingga 2C. Hal ini menunjukkan bahwa telah tercapai tujuan penelitian yaitu sebagai pengembangan awal anoda ZnO microrods sebagai anoda baterai ion lithium dengan kapasitas spesifik yang tinggi.
ABSTRACT
Transition-metal oxides (MxOy, M = Co, Fe, Cu, Zn) are such an attractive new materials for lithium ion battery anodes, as they generally have bigger specific capacity than graphite materials. Among the transition metals, ZnO have an advantage of their high theoretical capacity for about 978 mAh/g which are three times the equivalent of graphite used in today's lithium ion batteries. Another advantage of ZnO is non-toxic. Its availability is abundant and cheap in preparation. In addition, ZnO as a semiconductor material has a wide band gap (3.37 eV at room temperature), high electron mobility (100 cm2/Vs) and large energy bonds (60 meV) so that it has been widely used in many applications, including transparent conductors, biosensors and anode materials from lithium-ion batteries. In particular, the ZnO nanostructure has attracted much attention due to its unique nature and its possible application in a wide field. The various nanostructures of ZnO have been synthesized using different approaches. In this work, the liquid chemical deposition facile (CBD) of ZnO microrods on copper (Cu) foils was studied. During synthesis, we control the uniformity, density and diameter of ZnO microrods to determine the optimum conditions. The effects of temperature annealing on the growth of ZnO microrods and crystallization were further investigated. The size, alignment and uniformity of ZnO microrods were evaluated by scanning electron microscopy (SEM), while for structural analysis performed by XRD technique. The results showed that the annealing temperature significantly affected the growth of ZnO microrods. We found excellent experimental parameters achieved by using 3 (three) seed layers, annealing at 150 ° C within 10 minutes annealing, giving an average diameter of 218 nm, a crystal size of 53.29 nm and a density of 5.05 microrods / μm2. The largest crystal size ( 65.34 nm) was obtained at annealing temperatures at 100 ° C and 10 minutes anneal time. The SEM and HRSEM images in all samples tested showed that ZnO microrods were successfully grown on copper sheet substrates with diameters of 200-900 nm. The CV results show that the highest specific capacity is obtained by the ZnO150 sample with a specific capacity value of 811 mAh/gr for discharge and 773 mAh/gr for charging the current density of 0.5 A/g. While the lowest specific capacity was obtained in the ZnO50 sample with a specific capacity value of 572 mAh/gr for discharge and 562 for charge. While for cycle resistance obtained by the sample ZnO100
2018
D2579
UI - Disertasi Membership  Universitas Indonesia Library
cover
Fajar Rifqi Fadhila
Abstrak :
Baterai lithium-ion sebagai platform penyimpanan energi telah dikembangkan dalam 2 dekade terakhir dengan variasi komposisi elektroda. Baterai ini bisa dioptimalkan hingga 80% dari kemampuannya sebagai energy storage. Material anoda yang umum digunakan pada baterai lithium ion adalah grafit, memiliki struktur berlapis yang dapat memaksimalkan proses interkalasi ion lithium. Grafit berhasil disintesis dari green coke yang merupakan produk sampingan dari proses thermal cracking yang digunakan oleh perusahaan minyak bumi untuk mengubah residu bahan bakar minyak. Sintesis grafit (green coke) dilakukan dengan mencampurkan bahan green coke dengan Super P sebagai karbon konduktif, Polyivinylidine Fluoride (PVDF) sebagai pengikat (8: 1: 1), dan N-N Dimetyl Acetamid (DMAC) sebagai pelarut, kemudian digunakan sebagai lembaran anoda pada tahap pelapisan dengan cu-foil menggunakan doctor blade. Grafit (Sigma Aldrich) juga digunakan sebagai lembaran anoda sebagai pembanding. Anoda green coke dikarakterisasi menggunakan FTIR, XRD, SEM-EDS, TEM dan Raman. Kinerja elektrokimia dikarakterisasi menggunakan CV, GCD, dan EIS. Performa siklus anoda green coke dalam baterai Li-ion menghasilkan kapasitas discharge dan efisiensi coulombic masing-masing 202,59 mAh g-1 dan 79,77%. Anoda green coke menghasilkan efisiensi coulomb yang lebih rendah jika dibandingkan dengan anoda grafit (91,51%). Namun, kombinasi penggunaan limbah minyak bumi sebagai bahan baku dan kinerja elektrokimia yang baik akan membuat grafit (green coke) menjadi bahan yang menjanjikan untuk baterai dengan biaya rendah menghasilkan penyimpanan energi berskala besar.
Lithium-ion battery as an energy storage platform has been developed in the last 2 decades with variations in electrodes composition. This battery could be optimized up to 80% of its ability in storing energy. Anode material that commonly used in lithium ion battery is graphite, having a layered structure that can maximize the intercalation process of lithium ions. Graphite has been successfully synthesized from green coke which is a by-product of thermal cracking process used by petroleum companies to change fuel oil residues. Green coke graphite synthesis was carried out by mixing green coke material with Super P as conductive carbon, Polyivinylidine Fluoride (PVDF) as binder (8:1:1), and N-N Dimetyl Acetamid (DMAC) as solvent, then used as anode sheet on coating stage with copper foil using doctor blade. Commercial graphite were also used as anode sheet as comparison. The green coke anode was characterized using FTIR, XRD and SEM-EDS. Electrochemical performance was characterized using CV, GCD, and EIS. Cycling performance of green coke anode in Li-ion batteries produces reversible capacity and coulombic efficiency of 202.59 mAh g-1 and 79.77 %, respectively. Green coke anode produce lower coulombic efficiency when compared to graphite anode (91.51%). However, the combination of the use of petroleum waste as raw material and good electrochemical performance would make graphite green coke a promising material for a low cost battery for large scale energy storage.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahid Muhamad Furkon Rahmatulloh
Abstrak :
[ABSTRAK Li4Ti5O12/Si merupakan kandidat material menjanjikan dalam mengoptimalkan karakteristik Si dan Li4Ti5O12 sebagai material anoda pada Baterai Ion Lithium. Pembuatan Li4Ti5O12/Si dengan penambahan silikon sebesar 2 wt.%, 5 wt.%, dan 10 wt.% telah berhasil dilakukan. Partikel Silikon yang ditambahkan mempunyai ukuran 81 nm sebesar 66,7% dan 4100 ? 7500 nm sebesar 2,5 %. Proses sol-gel digunakan untuk membuat xerogel TiO2/Si dari bakalan titanium tetrabutoksida. Serbuk TiO2/Si didapatkan dengan memberikan perlakuan panas xerogel TiO2/Si pada suhu 300oC di dalam tube furnace dengan kondisi aerasi. Pencampuran serbuk TiO2/Si dengan Li2CO3 dilakukan dengan menggunakan High Energy Ball Mill. Perlakuan panas diberikan pada campuran serbuk tersebut pada suhu 650oC di dalam tube furnace dengan kondisi aerasi untuk mendapatkan serbuk Li4Ti5O12/Si. Karakteristik xerogel TiO2/Si, serbuk TiO2/Si, dan serbuk Li4Ti5O12/Si didapat dengan melakukan uji SEM-EDS, XRD, dan BET. Hasil yang didapat bahwa penambahan silikon akan mempengaruhi morfologi pembentukan TiO2 dan Li4Ti5O12 sehingga berpengaruh pada luas permukaan yang dihasilkannya, dimana luas permukaan maksimal pada 10 wt.% untuk xerogel TiO2/Si, 0 wt.% untuk serbuk TiO2/Si, dan 10 wt.% untuk serbuk Li4Ti5O12/Si. Selain itu, kristalinitas TiO2 tidak berubah secara signifikan dan kristalinitas Li4Ti5O12 menurun seiring dengan meningkatnya penambahan silikon. Karakteristik thermal serbuk Li4Ti5O12/Si didapatkan dengan melakukan pengujian STA. Hasil yang didapat bahwa panambahan silikon meningkatkan suhu transformasi material dan mengurangi pengurangan massa yang terjadi.
ABSTRACT , Li4Ti5O12/Si is a promising candidate material in optimizing the characteristic of Si and Li4Ti5O12 as anode material in Lithium Ion Batteries. Li4Ti5O12/Si with the addition of silicon at 2 wt.%, 5 wt.%, and 10 wt.% have been successfully manufactured. Silicon particles size was about 81 nm as much as 66.7% and 4,100 – 7,500 nm as much as 2.5%. Sol-gel process was used to create a TiO2/Si xerogel with titanium tetrabutoxside as a precursor. TiO2/Si powder was obtained by providing heat treatment TiO2/Si xerogel at 300oC in a tube furnace with aeration conditions. TiO2/Si powder and Li2CO3 powder were mixed by using the High Energy Ball Mill. The heat treatment was given to the powder mixture at 650oC in a tube furnace with aeration conditions to obtain Li4Ti5O12/Si powder. Characteristics of TiO2/Si xerogel, TiO2/Si powder, and Li4Ti5O12/Si powder were obtained by using SEM-EDS, XRD, and BET characterizations. The addition of silicon affected the morphology formation of TiO2 and Li4Ti5O12 so the effect on the resulting surface area which the maximum surface area at 10 wt.% on TiO2/Si xerogel, 0 wt.% on TiO2/Si powder, and 10 wt.% on Li4Ti5O12/Si powder. In addition, the cristallinity of TiO2 did not change significantly and the cristallinity of Li4Ti5O12 decreased with increasing addition of silicon particles. Thermal characteristics of the Li4Ti5O12/Si powder was obtained by using STA characterizations. The addition of silicon particles increased the transformation temperature of the material and reduce weight loss that occurs.]
2015
S60673
UI - Skripsi Membership  Universitas Indonesia Library
cover
Winda Rizky Amelia
Abstrak :
ABSTRAK
Peningkatan kebutuhan masyarakat setiap tahunnya semakin berkembang, dimana selalu akan berkembang teknologi dari tahun ketahun dengan adanya Si/Li4Ti5O12 dinilai dapat membantu mengembangkan teknologi dibidang baterai pada saat ini. Proses Li4Ti5O12 dengan ditambahkan Si dengan variabel sebanyak 15%, 30% dan 40% telah berhasil dilakukan. Dengan melalui proses Sol-gel untuk membuat xerogel TiO2/Si dari titanium tetrabutoksida. Lalu dilakukan proses kalsinasi dengan suhu 300ºC selama 2 jam. setelah dilakukan kalsinasi dilakukan kembali proses pencampuran dengan Li2CO3 dengan menggunakan High-Energy Ball Miller (HEBM) selama 75 menit. Setelah itu Li4Ti5O12 dilakukan proses sintering selama 3 jam dengan suhu 750˚C. Setelah mendapatkan Xerogel dari sintesis tersebut dilakukan beberapa kali pengujian seperti SEM/EDX, CV dan CD. Hasil fisual dari xerogel yang terlihat semakin besar kadar Si yang diberikan kedalam LTO maka akan semakin gelap warna yang dihasilkan. Pada hasil pengujian SEM didapatkan hasil butir yang sudah terbentuk kristalin namun masih terdapatnya aglomerat yang terlihat pada gambar SEM. Pada hasil EDX didapatkan unsur tertinggi didalamnya terdapat Si,Ti dan O. Pada hasil CV dan CD pada Si 15% dan 30%hasil yang didapatkan kurang stabil dan cenderung menghasilkan nilai yang masih rendah dibandingkan dengan Si 40% mendapatkan hasil yang cukup tinggi dan stabil.
ABSTRACT
Increasing needs of people each year is growing, which will always evolving technology from year to year with the Si / Li4Ti5O12 rated can help develop the technology in battery at this time. Li4Ti5O12 process with added Si with variables as much as 15%, 30% and 40% have been successfully carried out. Through Sol-gel process for making xerogel TiO2 / Si of titanium tetrabutoksida. Then do calcination process at a temperature of 300ºC for 2 hours. after calcination conducted back in the process of mixing with Li2CO3 using High-Energy Ball Miller (HEBM) for 75 minutes. After that Li4Ti5O12 sintering process is carried out for 3 hours at a temperature of 750C. After getting Xerogel of the synthesis is carried out several times of testing such as SEM / EDX, CV and CD. Results fisual of xerogel seen greater levels of Si is given into LTO then the darker color produced. SEM on the test results showed that formed crystalline grains but still the presence of agglomerates shown in the SEM image. EDX results obtained on the highest element in which there are Si, Ti and O. on CV outcomes and CD on Si 15% and 30% of the results obtained are less stable and tend to produce a value that is lower than the Si 40% get results fairly high and stable.
2016
S63309
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pierre Wolter Winowatan
Abstrak :
Konsumsi bahan bakar fosil telah dianggap sebagai salah satu kebutuhan utama kita. Penggunaan bahan bakar fosil bisa merusak lingkungan dengan menghasilkan polusi sebagai produk dari pembakaran bahan bakar fosil. Ada banyak penemuan mengenai pengembangan penyimpanan energi seperti baterai. Penggunaan baterai lithium-ion dapat menjanjikan untuk aplikasi yang membutuhkan daya tinggi dan salah satu kandidat untuk mengalihkan penggunaan bahan bakar fosil. Lithium titanat adalah bahan yang menjanjikan untuk digunakan sebagai bahan anoda. Penambahan silikon yang memiliki kapasitas teoritis 4200 mAh g-1 telah membuat lithium titanat dan silikon untuk saling melengkapi dan bersinergi satu sama lain. Lithium titanate disintesis menggunakan metode sol-gel dan metode solid state. Peracikan dengan elemen silikon dalam slurry dapat mencegah perubahan fase dari silikon menjadi SiO2. Kadar silikon dibagi menjadi tiga komposisi 10 , 20 dan 30 dengan nomenklatur LTO-Si10 sr, LTO-Si20 sr dan LTO-Si30 sr untuk setiap sampel memiliki konten yang berbeda dari silikon masing-masing. Kapasitas tertinggi terkait dengan tingkat C rate yang berbeda adalah LTO-Si20 sr dan Diikuti oleh LTO-Si10 sr yang dimana kapasitas saat C rate berbeda LTO-Si30 memiliki kapasitas yang terbilang buruk.
The consumption of fossil fuel has been considered as one of our main necessity. The use of fossil fuel could damage our environment with the produce of pollution as the combustion product of fossil fuel. There are many inventions regarding the development of energy storage such as battery. The use of lithium ion has been promising for high power application and one of the candidates to divert the usage of fossil fuel. Lithium titanate is a promising material to be used as anode material. The addition of silicon which has theoretical capacity of 4200 mAh g 1 has made lithium titanate and silicon to compliment and synergize with one another. The lithium titanate was synthesized using sol gel and solid state methods. The compounding with silicon element was in the slurry making to prevent any phase changes of silicon to be SiO2. The silicon content was divided into three compositions of 10, 20 and 30 with the nomenclature of LTO Si10 sr, LTO Si20 sr and LTO Si30 sr for each sample having different content of silicon respectively. The highest capacity associated with different C rate is LTO Si20 sr and followed by LTO Si10 sr with LTO Si30 sr having poor overall capacity.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69280
UI - Skripsi Membership  Universitas Indonesia Library
cover
His Muhammad Bintang
Abstrak :
Dengan tren perkembangan sumber energi baru terbarukan EBT dan mobil listrik, tuntutan akan piranti penyimpan energi PPE berperforma tinggi tidak dapat dihindari. Peningkatan yang signifikan telah dicapai melalui penelitian mengenai mekanisme penyimpanan energi dan penelitian material baru. Saat ini, PPE dengan kepadatan energi tinggi diwakilkan oleh baterai, dan PPE dengan kepadatan daya tinggi diwakilkan oleh superkapasitor. Namun beberapa aplikasi membutuhkan kepadatan energi dan daya yang tinggi. Solusinya adalah kapasitor ion lithium, yang menggabungkan mekanisme kerja dari baterai dan superkapasitor. Pada penelitian ini, setengah sel kapasitor ion lithium disusun menggunakan elektroda berbahan karbon aktif yang telah tersedia secara komersial dan karbon aktif yang disintesis dari limbah tongkol jagung. Pengujian BET menunjukkan bahwa proses aktivasi dapat meningkatkan luas permukaan spesifik SSA dari karbon tongkol jagung lima kali lebih tinggi, yaitu mencapai 615,448 m /g. Sementara pengujian elektrokimia menunjukkan bahwa semakin tinggi SSA, maka kapasitas spesifik menjadi lebih besar. Dari tiga elektroda yang berbeda, elektroda berbahan karbon aktif komersial menunjukkan performa yang lebih unggul dengan kapasitas spesifik sebesar 91,85 mAh/g.
Nowadays, the development of renewable energy and electric carsmaking the demand for high performance energy storage devices unavoidable. Significant improvements have been achieved through research on energy storage mechanisms and investigation on new materials. At this time, the high energy density energy storage is represented by batteries, and high power density device is represented by supercapacitors. However, some applications require both of high energy and power density. The solution is combining the mechanism of the battery and the supercapacitor as lithium ion capacitor. In this study, half cell lithium ion capacitor were assembled using commercially available activated carbon electrodes and activated carbon electrodes synthesized from corncob waste. The BET test shows that the activation process can increase the specific surface area SSA of corncob carbon up to five times higher, reaching 615,448 m g. While electrochemical characterization shows that the higher the SSA, the higher specific capacity achieved. From three different electrodes, commercial activated carbon electrodes show superior performance with a specific capacity of 91.85 mAh g.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferdian Razak
Abstrak :
Baterai menjadi komponen kunci dalam sistem penyimpanan energi, maka dari itu sangat penting untuk mengestimasi nilai State of Charge secara akurat untuk mengelola dan memanfaatkan daya baterai secara optimal. Ketidakakuratan estimasi SoC dapat menyebabkan performa yang tidak optimal dan kerusakan baterai. Pendekatan tradisional dalam estimasi SoC cenderung kurang presisi, terutama di bawah kondisi dinamis. Oleh karena itu, untuk meningkatkan akurasi estimasi SoC, pada penelitian ini diusulkan model estimasi SoC menggunakan metode Support Vector Machine dengan Particle Swarm Optimization pada baterai Lithium-Ion dan Lithium-Polymer karena keduanya banyak digunakan dalam berbagai aplikasi, termasuk kendaraan listrik, perangkat seluler, dan peralatan elektronik. Hasil penelitian ini akan menunjukkan algoritma SVM dan PSO-SVM yang dapat digunakan untuk memprediksi estimasi pada baterai Lithium-Ion dan Lithium-Polymer. Berdasarkan penelitian yang telah dilakukan diperoleh hasil skor R-Squared menggunakan SVM pada Lithium-Ion sebesar 96,1% dan Lithium-Polymer sebesar 92,8%, serta menggunakan PSO-SVM pada Lithium-Ion 97,8% sebesar dan Lithium-Polymer sebesar 93,6%. hasil skor Mean Absolute Error diperoleh dengan menggunakan SVM pada Lithium-Ion sebesar 4,9% dan Lithium-Polymer sebesar 6,0%, serta menggunakan PSO-SVM pada Lithium-Ion sebesar 3,8% dan Lithium-Polymer sebesar 5,7%. hasil skor Root Mean Squeared Error diperoleh dengan menggunakan SVM pada Lithium-Ion sebesar 6,3% dan Lithium-Polymer sebesar 8,1%, serta menggunakan PSO-SVM pada Lithium-Ion sebesar 4,8% dan Lithium-Polymer sebesar 7,7%. Hasil analisis menunjukkan bahwa algoritma PSO-SVM dan SVM lebih cocok diaplikasikan pada baterai Lithium-Ion dibandingkan Baterai Lithium-Polymer, khusunya PSO-SVM. ......Batteries become a key component in the energy storage system; therefore, it is crucial to accurately estimate the State of Charge to manage and utilise the battery power optimally. Inaccuracy in SoC estimation can lead to suboptimal performance and battery damage. Traditional approaches in SoC estimation tend to lack precision, especially under dynamic conditions. Therefore, to improve the accuracy of SoC estimation, this study proposes a SoC estimation model using Support Vector Machine with Particle Swarm Optimization method for Lithium-Ion and Lithium-Polymer batteries as they are widely used in various applications, including electric vehicles, mobile devices, and electronic equipment. The results of this research will show the PSO-SVM and SVM algorithms that can be used to predict estimates for Lithium-Ion and Lithium-Polymer batteries. Based on research that has been carried out, the R-Squared score results obtained using SVM on Lithium-Ion were 96.1% and Lithium-Polymer was 92.8%, and using PSO-SVM on Lithium-Ion was 97.8% and Lithium-Polymer was 93 .6%. The Mean Absolute Error score results were obtained using SVM on Lithium-Ion of 4.9% and Lithium-Polymer of 6.0%, and using PSO-SVM on Lithium-Ion of 3.8% and Lithium-Polymer of 5.7%. The Root Mean Squeared Error score results obtained using SVM on Lithium-Ion were 6.3% and Lithium-Polymer were 8.1%, and using PSO-SVM on Lithium-Ion was 4.8% and Lithium-Polymer was 7.7%. The analysis results show that the PSO-SVM and SVM algorithms are more suitable for application to Lithium-Ion batteries compared to Lithium-Polymer Batteries, especially PSO-SVM.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eko Sulistiyono
Abstrak :
Pemisahan ion magnesium dan lithium merupakan kunci sukses pengembangan ekstrasi lithium dari sumberdaya air asin di Indonesia. Hal ini karena air asin sebagai sumber lithium di Indonesia mempunyai kadar magnesium dan rasio Mg/Li tinggi. Melalui serangkaian kegiatan penelitian yang dituangkan dalam disertasi ini ditawarkan proses pemisahan dengan menggunakan bahan reagen sodium silikat dan paparan gelombang ultrasonic. Tujuan pertama penelitian adalah investigasi anion yang berpengaruh pada proses pemisahan ion magnesium dan lithium pada air asin geothermal dengan pembanding air asin geothermal artificial. Tujuan kedua adalah mempelajari pengaruh konsentrasi dan kontrol rasio Mg/Li sebelum proses pemisahan terhadap proses pemisahan ion magnesium dan lithium pada air asin pekat non-geothermal. Tujuan ketiga adalah mengamati pengaruh konsentrasi terhadap proses pemisahan ion magnesium dan lithium pada air asin dan air asin pekat geothermal. Tujuan keempat adalah menelaah pengaruh paparan gelombang ultrasonik pada proses presipitasi sodium silikat pada air asin geothermal. Pada percobaan pemisahan ion magnesium dan lithium dengan reagen sodium silikat menunjukkan bahwa bahan air asin alam lebih baik dari pada bahan air asin artificial. Hal ini karena pengaruh anion karbonat yang ada pada air asin alam dan tidak ada pada air asin artificial. Pengenceran air pada air asin pekat non geothermal (limbah tambak garam) mampu menurunkan rasio Mg/Li dari 1033 menjadi 374. Kontrol rasio Mg/Li dengan menambahkan lithium karbonat sebelum proses presipitasi mampu menaikkan perolehan lithium dari 21,21 % menjadi 44 % (air asin pekat A) dan 39 % (air asin pekat B). Konsentrasi dari air asin geothermal (mata air panas Gunung Panjang) berpengaruh pada ptroses pemisahan ion magnesium dan lithium yaitu pada konsentrasi air asin pekat geothermal perolehan lithium hanya 21,92 % dan perolehan lithium pada air asin geothermal diperoleh lithium menjadi 78,06 %. Dengan dibantu paparan gelombang ultrasonik pada proses presipitasi, terjadi peningkatan perolehan lithium dari 79,75 % menjadi 98,45 %. Penambahan tahapan pengambilan kembali lithium dari hasil samping padatan, dengan proses pelindian air maka diperoleh peningkatan hasil lithium menjadi 99,84 %. ......The separation of magnesium and lithium ions is the key to the successful development of lithium extraction from brine water resources in Indonesia. This is because brine water as a source of lithium in Indonesia has high levels of magnesium and a high Mg/Li ratio. Through a series of research activities outlined in this dissertation, a separation process is offered using sodium silicate reagents and ultrasonic wave irradiation. The first aim of this research is to investigate anions that affect the process of separating magnesium and lithium ions in geothermal brine water in comparison to artificial geothermal brine water. The second objective is to study the effect of concentration and control of the Mg/Li ratio before the separation process on the separation of magnesium and lithium ions in non-geothermal bittern. The third objective was to observe the effect of concentration on the separation process of magnesium and lithium ions in geothermal brine water and bittern. The fourth objective is to examine the effect of ultrasonic wave irradiation on the sodium silicate precipitation process in geothermal brine water. The experiment of separating magnesium and lithium ions with sodium silicate reagent showed that natural brine water is better than artificial brine water. This is due to the influence of carbonate anions in natural brine water and not in artificial brine water. Diluting water in non-geothermal bittern (salt pond waste) was able to reduce the Mg/Li ratio from 1033 to 374. Controlling the Mg/Li ratio by adding lithium carbonate before the precipitation process was able to increase lithium recovery from 21.21% to 44% (bittern A) and 39% (bittern B). The concentration of geothermal brine water (Gunung Panjang hot springs) affects the process of separating magnesium and lithium ions. In concentrated geothermal brine water, lithium recovery is only 21.92% and lithium recovery in geothermal brine water obtains lithium at 78.06%. With the assistance of ultrasonic wave irradiation in the precipitation process, there was an increase in lithium recovery from 79.75% to 98.45%. The addition of the lithium recovery stage from the solid by-products, with the water leaching process resulted in an increase in the lithium yield to 99.84%.
Depok: 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Slamet Priyono
Abstrak :
Sintesis serbuk Li4Ti5O12 yang didoping atom Al dan Na untuk material anoda pada baterai ion lithium telah berhasil dilakukan dengan metode reaksi padat. Doping Al pada Li4Ti5O12 bertujuan untuk menaikkan konduktifitas ionik dan memperkuat struktur sedangkan doping Na bertujuan untuk menurunkan tegangan operasi. Pendopingan dilakukan dengan mengikuti persamaan Li(4-(x/3+y))AlxNayTi(5-2x/3)O12 (x=0; 0,025; 0,05; 0.075 dan y= 0;1) dimana atom Al mensubtitusi Ti dan Li sedangkan atom Na mensubtitusi Li. Sintesis dilakukan melalui metoda metalurgi serbuk dengan menggunakan Li2CO3, TiO2-anatase, Al2O3 and Na2CO3 sebagai bahan baku. Pada penelitian ini, pengaruh subtitusi Na dan Al dalam Li4Ti5O12 terhadap struktur, morphologi, ukuran partikel, surface area dan performa elektrokimia diteliti secara detil. Hasil penelitian menunjukkan bahwa doping ion Al pada Li4Ti5O12 tidak merubah struktur kristal Li4Ti5O12. Hasil FTIR menkonfirmasi tidak adanya perubahan struktur spinel pada gugus khas ketika didoping Al, dengan meningkatnya doping Al membuat tekstur butir menjadi berpori, ukuran partikel menurun dengan ukuran terkecil 20,32 μm, surface area meningkat dengan nilai tertinggi 8,25 m2/gr, konduktifitas ionik meningkat dengan konduktifitas terbaik adalah 8,5 x 10-5 S/cm, tegangan kerja sekitar 1,55 V dan kestabilan siklus terbaik diperoleh pada doping Al 0,025 dengan kapasitas maksimum 70 mAh/g. Sedangkan doping Na dalam Li4Ti5O12 menyebabkan perubahan struktur dengan terbentuk 3 phasa baru yaitu NaLiTi3O7, Li4Ti5O12, dan Li2TiO3. Perubahan struktur juga dikonfirmasi dengan perubahan gugus khas hasil analysis FTIR. Sedangkan kenaikan doping Al menyebabkan phasa NaLiTi3O7 semakin dominan, tekstur butiran menjadi halus, ukuran partikel menurun dengan ukuran terkecil 30,89 μm, surface area menurun, konduktifitas ionic stabil pada 2,5 x 10-5 S/cm, potensial kerja di 1,3 V dan 1,55V, kestabilan struktur didapat pada doping Al 0,05 dengan kapasitas 90 mAh/g. Secara keseluruhan menunjukkan bahwa penambahan doping Al mampu meningkatkan konduktifitas ionik dan kestabilan siklus dan doping Na menurunkan tegangan kerja. ...... Synthesis of Li4Ti5O12 powder doped by Al and Na atoms for lithium ion battery anodes had been carried out using solid state reaction. Al doped on Li4Ti5O12 aim is to increase the ionic conductivity and strengthen the structure of Li4Ti5O12 while Na doped aimed is to decrease the operating voltage. Al and Na doped on Li4Ti5O12 had been carried out by following equation Li(4 - (x / 3 + y))AlxNayTi(5-2x/3)O12 (x = 0; 0,025; 0.05, 0.075 and y = 0, 1) where the Al atoms substitute Ti and Li while Na substituting Li atoms. Synthesis is conducted through a solid state reaction by using Li2CO3, TiO2-anatase, Al2O3 and Na2CO3 as raw materials. In this study, the effects of substitution of Na and Al in Li4Ti5O12 on the structure, morphology, particle size, surface area, and electrochemical performance were deep studied. The results showed that the Al doped on the Li4Ti5O12 was not change crystal structure of Li4Ti5O12. FTIR results confirmed that the absence of changes spinel structure in fingerprint region when doped Al, with increasing Al doped make textures porous grains, particle size decreases to 20.32 μm, surface area increases with highest value of 8.25 m2/gr, conductivity is increased with the best conductivity 8.5 x 10-5 S/cm, , the working voltage of about 1.55 V and the best cycle stability was obtained on doping Al 0.05 and the maximum capacity is 70 mAh/g. While doping Na in Li4Ti5O12 caused structural changes to the three phases formed NaLiTi3O7, Li4Ti5O12, and Li2TiO3. Tranformation on the structure is also confirmed by the changes in the fingerprint region with FTIR analysis. While the increase in Al doping causes NaLiTi3O7 phase become dominant, texture of granular becomes bigger and smoother, the particle size decreases to 30.89 μm, surface area decreases, the ionic conductivity was stable at 2.5 x 10-5 S/cm, The working potential in 1, 3 V and 1.55 V, the stability of the structure obtained on doping Al 0.05 and the maximum capacity of 90 mAh/g. Overall showed that the addition of Al doped can improve the ionic conductivity while stability of the cycle and the Na doped decrease the working voltage.
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42630
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>