Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Deandra Setyaputri
Abstrak :
Dalam pendidikan, partisipasi pelajar dalam kelas dapat menjadi salah satu faktor pendukung proses pembelajaran yang efektif. Demi mendukung partisipasi pelajar, penelitian ini bertujuan untuk mengembangkan sebuah forum diskusi online untuk proses e-learning dengan mengimplementasikan fitur partisipasi anonim dimana pelajar dapat mengunggah post tanpa harus menunjukkan identitas aslinya. Pilihan untuk dapat berpartisipasi secara anonim mampu meningkatkan keinginan pelajar untuk berpartisipasi dalam pembelajaran seperti melalui aksi bertanya, menjawab pertanyaan, dan berpendapat dalam kelas. Namun anonimitas yang ditawarkan dapat mengundang perilaku buruk karena berkurangnya akuntabilitas. Untuk mengatasinya, penelitian ini juga bertujuan untuk mengembangkan sistem moderasi otomatis pada forum diskusi dengan memanfaatkan model deep learning pendeteksi bahasa kasar berbasis Bidirectional Encoder Representations from Transformers atau BERT. Setiap kali pengguna ingin mengirim unggahan ke dalam forum diskusi, model pendeteksi bahasa kasar akan terlebih dahulu mengklasifikasikan teks unggahan tersebut ke dalam kelas ‘abusive’ jika terdapat unsur kasar, menyinggung, atau mengandung kebencian dan ke dalam kelas ‘safe’ jika tidak. Sistem akan secara otomatis mencegah suatu unggahan untuk terkirim jika unggahan tersebut diklasifikasikan sebagai ‘abusive’. Model pendeteksi bahasa kasar tersebut dilatih dengan melakukan fine-tuning pada IndoBERT, model pre-trained Bahasa Indonesia berbasis BERT, dan IndoBERTweet yang dilatih untuk domain Twitter. Berdasarkan hasil pengujian, model dengan performa terbaik merupakan model hasil fine-tuning IndoBERTweet yang mencapai F1 Score sebesar 91,02%. Durasi waktu yang dibutuhkan oleh model untuk mengeksekusi prediksi bervariasi berdasarkan panjang input, dimana durasi bertambah seiring dengan meningkatnya jumlah karakter pada input, namun maksimum berada di kisaran 1,3 detik karena adanya batasan jumlah token input yang dapat diproses model. ......In education, students’ in-class participation can be one of the supporting factors for effective learning. In order to promote student participation, this study aims to develop an online discussion forum for e-learning that implements an anonymous participation feature where students can upload posts without having to show their real identities. The choice to be able to participate anonymously has been proven to improve students’ motivation to participate in the learning process through asking and answering questions and expressing opinions in class. But the anonymity offered can be the cause of several bad behaviors due to the lack of accountability. To handle this, this research will also aim to develop an automatic moderation system for the discussion forums that uses an abusive language classifier deep learning model based on Bidirectional Encoder Representations from Transformers or BERT. Every time a user wants to upload a post to the discussion forum, the abusive language detection model will first classify the uploaded text into the ‘abusive’ class if it contains abusive language or hateful content and into the ‘safe’ class if otherwise. The system will automatically prevent a post from being uploaded if it was classified as ‘abusive’. The abusive language classifier model is trained by fine-tuning the IndoBERT model, a pre-trained Bahasa Indonesia model based on BERT, and IndoBERTweet which was trained for the Twitter domain. Based on testing results, the model with the best performance is the fine-tuned IndoBERTweet model which achieved an F1 Score of 91,02%. The duration of time required by the model to execute predictions varies based on the length of the input, where the duration increases as the number of characters in the input increases, but the maximum is around 1.2 seconds due to a limit on the number of input tokens that the model can process.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ilma Alpha Mannix
Abstrak :
Penelitian ini bertujuan untuk menguji efektivitas pre-trained language model BERT pada tugas pencarian dosen pakar. Bidirectional Encoder Representations from Transformers (BERT) merupakan salah satu state-of-the-art model saat ini yang menerapkan contextual word representation (contextual embedding). Dataset yang digunakan pada penelitian ini terdiri dari data pakar dan bukti kepakaran. Data pakar merupakan data dosen Fakultas Ilmu Komputer Universitas Indonesia (Fasilkom UI). Data bukti kepakaran merupakan data abstrak digital tugas akhir mahasiswa Fasilkom UI. Model yang diusulkan pada penelitian ini terdiri dari tiga variasi BERT, yaitu IndoBERT (Indonesian BERT), mBERT (Multilingual BERT), dan SciBERT (Scientific BERT) yang akan dibandingkan dengan model baseline menggunakan word2vec. Terdapat dua pendekatan yang dilakukan untuk mendapatkan urutan dosen pakar pada variasi model BERT, yaitu pendekatan feature-based dan fine-tuning. Penelitian ini menunjukkan bahwa model IndoBERT dengan pendekatan feature-based memberikan hasil yang lebih baik dibandingkan baseline dengan peningkatan 6% untuk metrik MRR hingga 9% untuk metrik NDCG@10. Pendekatan fine-tuning juga memberikan hasil yang lebih baik pada model IndoBERT dibandingkan baseline dengan peningkatan 10% untuk metrik MRR hingga 18% untuk metrik P@5. Diantara kedua pendekatan tersebut, dibuktikan bahwa pendekatan fine-tuning memberikan hasil yang lebih baik dibandingkan dengan pendekatan feature-based dengan peningkatan 1% untuk metrik P@10 hingga 5% untuk metrik MRR. Penelitian ini menunjukkan bahwa penggunaan pre-trained language model BERT memberikan hasil yang lebih baik dibandingkan baseline word2vec dalam tugas pencarian dosen pakar. ......This study aims to test the effectiveness of the pre-trained language model BERT on the task of expert finding. Bidirectional Encoder Representations from Transformers (BERT) is one of the current state-of-the-art models that applies contextual word representation (contextual embedding). The dataset used in this study consists of expert data and expertise evidence. The expert data is composed of faculty members from the Faculty of Computer Science, University of Indonesia (Fasilkom UI). The expertise evidence data consists of digital abstracts by Fasilkom UI students. The proposed model in this research consists of three variations of BERT, namely IndoBERT (Indonesian BERT), mBERT (Multilingual BERT), and SciBERT (Scientific BERT), which will be compared to a baseline model using word2vec. Two approaches were employed to obtain the ranking of expert faculty members using the BERT variations, namely the feature-based approach and fine-tuning. The results of this study shows that the IndoBERT model with the feature-based approach outperforms the baseline, with an improvement of 6% for the MRR metric and up to 9% for the NDCG@10 metric. The fine-tuning approach also yields better results for the IndoBERT model compared to the baseline, with an improvement of 10% for the MRR metric and up to 18% for the P@5 metric. Among these two approaches, it is proven that the fine-tuning approach performs better than the feature-based approach, with an improvement of 1% for the P@10 metric and up to 5% for the MRR metric. This research shows that the use of the pre-trained language model BERT provides better results compared to the baseline word2vec in the task of expert finding.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Carles Octavianus
Abstrak :
Peningkatan jumlah data teks digital membuat manusia membutuhkan mekanisme untuk mengembalikan teks yang efektif dan efisien. Salah satu mekanisme untuk mengembalikan teks adalah dengan pemeringkatan teks. Tujuan dari pemeringkatan teks adalah menghasilkan daftar teks yang terurut berdasarkan relevansinya dalam menanggapi permintaan kueri pengguna. Pada penelitian ini, penulis menggunakan Bidirectional Encoder Representations from Transformers (BERT) untuk membangun model pemeringkatan teks berbahasa Indonesia. Terdapat 2 cara penggunaan BERT untuk pemeringkatan teks, yaitu BERT untuk klasifikasi relevansi dan BERT untuk menghasilkan representasi vektor dari teks. Pada penelitian ini, 2 cara penggunaan BERT tersebut terbagi menjadi 4 model, yaitu BERTCAT, BERTDOT, BERTDOTHardnegs, BERTDOTKD. Penggunaan BERT memberikan peningkatan kualitas pemeringkatan teks bila dibandingkan dengan model baseline BM25. Peningkatan kualitas pemeringkatan teks tersebut dapat dilihat dari nilai metrik recriprocal rank (RR), recall (R), dan normalized discounted cumulative gain (nDCG). ......The increase in the amount of digital text data has led humans to require mechanisms for effectively and efficiently retrieving text. One mechanism for text retrieval is text ranking. The goal of text ranking is to generate a list of texts sorted based on their relevance in response to user query requests. In this study, the author uses Bidirectional Encoder Representations from Transformers (BERT) to build a text ranking model for the Indonesian language. There are 2 ways to use BERT for text ranking, namely BERT for relevance classification and BERT for generating vector representations of text. In this study, these 2 ways of using BERT are divided into 4 models, namely BERTCAT, BERTDOT, BERTDOTHardnegs, BERTDOTKD. The use of BERT improves the quality of text ranking compared to the baseline BM25 model. The improvement in the quality of text ranking can be seen from the values of the reciprocal rank (RR), recall (R), and normalized discounted cumulative gain (nDCG) metrics.
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Steven Nathaniel Trosno
Abstrak :
Pemilihan umum presiden merupakan momen krusial dalam demokrasi, di mana opini publik memainkan peran penting dalam menentukan hasil. Dalam era digital, media sosial menjadi platform utama bagi masyarakat untuk menyampaikan pandangan dan opini mereka. Penelitian ini bertujuan untuk menganalisis sentimen masyarakat terhadap pemilihan bakal calon presiden Indonesia 2024, yaitu Ganjar, Prabowo, dan Anies melalui media sosial X menggunakan model IndoBERT. Data dikumpulkan dari media sosial X melalui teknik crawling untuk memastikan relevansi data. Model IndoBERT diterapkan untuk melakukan analisis sentimen terhadap data teks yang diklasifikasikan ke dalam kategori positif, negatif, dan netral. Hasil menunjukkan bahwa model dengan hyperparameter terbaik (learning rate 5e-6 dan data splitting 0.2) mencapai akurasi 94.66% dalam mengklasifikasikan sentimen, dengan nilai precision, recall, dan f1-score yang konsisten. Meskipun demikian, terdapat kecenderungan bahwa model memprediksi kurang atau memprediksi berlebih jumlah data pada semua kandidat. Analisis dari precision-recall curve menunjukkan bahwa ketidakseimbangan data memiliki pengaruh terhadap performa model, namun model dengan hyperparameter terbaik tetap mencapai nilai AUC 0.92 terhadap ketidakseimbangan data tersebut. Analisis sentimen ini memberikan wawasan penting bagi partai politik dalam menentukan strategi kampanye dan mengidentifikasi kandidat yang paling disukai oleh masyarakat dalam pemilihan umum presiden 2024. ......The presidential election is a crucial moment in democracy, where public opinion plays a vital role in determining the outcome. In the digital era, social media has become a primary platform for people to express their views and opinions. This research aims to analyze public sentiment towards the 2024 Indonesian presidential candidates—Ganjar, Prabowo, and Anies—through social media platform X using the IndoBERT model. Data was collected from social media X through crawling techniques to ensure data relevance. The IndoBERT model was applied to perform sentiment analysis on the text data, classifying it into positive, negative, and neutral categories. The results show that the model with the best hyperparameters (learning rate of 5e-6 and data splitting of 0.2) achieved 94.66% accuracy in sentiment classification, with consistent precision, recall, and f1-score values. However, there is a tendency for the model to underpredict or overpredict the amount of data for all candidates. Analysis of the precision-recall curve indicates that data imbalance affects the model's performance, but the model with the best hyperparameters remains achieved AUC 0.92, indicating robustness against this imbalance. This sentiment analysis provides important insights for political parties in determining campaign strategies and identifying the most favored candidates by the public in the 2024 presidential election.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library