Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Jahroo Nabila Marvi
Abstrak :
Sifat lingkungan bawah air yang kompleks menjadi sebuah tantangan untuk analisis citra bawah air. Citra bawah air sering mengalami distorsi warna dan visibilitas buruk karena penyerapan dan penghamburan. Hal ini menyebabkan kualitas citra menjadi buruk dan sulit dimengerti, sehingga membuat sistem analisis citra sulit diterapkan di bawah air. Banyak metode yang telah dikembangkan untuk mengatasi tantangan ini. Akan tetapi, setiap metode memiliki keterbatasannya masing-masing. Metode konvensional, seperti metode berbasis physical dan non-physical, sering kali tidak cukup untuk mencakup beragam kondisi bawah air. Sementara itu, metode deep learning cenderung memiliki beban komputasi berat. Metode ini juga berpotensi untuk tidak dapat beradaptasi pada data yang berbeda karena parameter yang sudah tetap setelah pelatihan. Untuk mengatasi keterbatasan kedua metode, penelitian ini mengadopsi pendekatan hybrid GL-Net+CHE yang merupakan model restorasi yang menggabungkan metode konvensional dan deep learning. Modifikasi dari model tersebut, Mod GL-Net+CHE, dilakukan pada komponen deep learning. Dari hasil evaluasi kuantitatif pada data uji UIEB, Mod GL-Net+CHE memperoleh nilai terbaik dengan SSIM 0.9015, PSNR 21.6835, dan 00 9.4205. Namun, berdasarkan hasil evaluasi kualitatif pada data UIEB dan uji robustness pada data UCCS, perbedaan antara model baseline (GL-Net+CHE) dan model modifikasi (Mod GL-Net+CHE) tidak signifikan. Pada ablation studies, ditemukan bahwa hasil kuantitatif Mod GL-Net+CHE lebih baik ketika hanya menggunakan komponen deep learning saja. Akan tetapi, observasi dari beberapa sampel menunjukkan bahwa hasil kuantitatif tidak selalu merefleksikan hasil kualitatif. Hingga saat ini, membandingkan performa model restorasi dan mengukur kualitas citra masih menjadi tantangan. ......The complex nature of underwater environments poses a challenge in underwater image understanding. Underwater images often have color distortion and poor visibility due to absorption and scattering. These phenomenons negatively affect the quality and the interpretability of the images, which becomes a hindrance in underwater vision-related tasks. Many methods have been developed to overcome this problem. However, each of them has its own limitations. Conventional methods, such as physical-based and non-physical based, are often not sufficient enough to cover a wide variety of underwater scenes. Deep learning methods, on the other hand, have a heavy computational cost. It might also be unable to adapt to different datasets due to its fixed parameters after training. To overcome the limitations of both approaches, this research adopts a hybrid approach, GL-Net+CHE, a restoration model that combines conventional and deep learning methods. A modification of this model, named Mod GL-Net+CHE, is proposed, which modifies the deep learning component of the baseline model. Based on the quantitative evaluation on the UIEB dataset, Mod GL-Net achieves the best SSIM, PSNR, and ΔE00 with value 0.9015, 21.6835, and 9.4205 respectively. However, based on the qualitative evaluation, there are no significant differences between the baseline and modified model. Ablation studies also show that Mod GL-Net+CHE performs better when only the deep learning component is used. However, further observation shows that quantitative results do not always reflect qualitative result. To this day, comparing the performance of underwater images restoration models and measuring the quality of underwater images remains challenging.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
A. Fatima Azzahra
Abstrak :
Latar belakang: Kondisi penyakit periodontal dapat diidentifikasi dengan pemeriksaan klinis dan radiografi.Pada teknik radiografi digitaldapat dilakukan image enhancement untuk memperbaiki kualitas gambar dengan mengoptimalkan brightness dan contrast. Tujuan :Mengetahui batasan valueyang dapat ditoleransi pada pengaturan brightnessdan contrast pada kasus periodontitis mild - moderate.Metode :Dilakukan image enhancementdengan mengubah brightnessdan contrastpada 100 radiograf dengan kasus periodontitis mild-moderatedengan interval poin -20,-10, +10 dan +20 pada setiap sampel pada masing-masing kelompok menggunakan program software Digora for Windows. Hasil :Valueyang dapat ditoleransi pada pengaturan brightness pada kasus periodontitis mild-moderateberkisarpada valuedibawah +10 dan yang dapat ditoleransi dalam pengaturan contrastberkisardari valuediatas -20.Kesimpulan :Pengaturan brightnessdan contrastdilakukan pada valuetersebut tidak akan mempengaruhi ataupun mengubah interpretasi radiografik periodontitis mild - moderatejika dilakukan pada value toleransinya. ......Background :Periodontal disease condition can be checked by clinical and radiograph examination. In digital radiography techniques, image enhancement can be done to improve image quality by optimizing brightness and contrast. Objective :To determine the limit of values that can be tolerated in brightness and contrast setting in mild-moderate periodontitis cases. Methods :Adjust the image enhancement setting by changing the brightness and contrast of 100 radiographs with mild-moderate periodontitis with points intervals of -20, -10, +10 and +20 each sample in each group using the Digora for Windows. Result :Values that can be tolerated in brightness setting in interpretation of mild-moderate periodontitis rangeat values below +10 and values that can be tolerated in contrast setting rangefrom values above -20. Conclusion :Brightness and contrast adjustment made at these values will not affect the radiographic interpretation of mild-moderate periodontitis if carried out at their tolerance values.
Depok: Fakultas Kedokteran Gigi Univeritas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldi
Abstrak :
Mempelajari bahasa isyarat bukanlah sesuatu yang mudah. Untuk membantu mempelajari bahasa isyarat, muncul penelitian mesin translasi gerakan isyarat menjadi teks yang dapat dibaca. Untuk penggunaan secara luas, terdapat mesin translasi gerakan isyarat menjadi teks memanfaatkan telepon pintar. Hasil teks yang dihasilkan oleh mesin translasi bergantung terhadap masukkan rangkaian gerakan isyarat. Masukkan ini dapat diperoleh melalui rekaman kamera telepon pintar. Ketika gerakan isyarat bergerak lebih cepat dibandingkan penangkapan bingkai oleh kamera, hasil rekaman menjadi kabur. Rekaman yang kabur akan membuat mesin translasi tidak dapat melakukan prediksi dengan baik. Salah satu solusi untuk mengurangi kabur pada gambar adalah dengan melakukan deblurring. Penelitian ini akan menggunakan metode DeblurGAN-v2 untuk mengurangi tingkat kabur pada bingkai dan menguji hasilnya pada mesin translasi gerakan isyarat SIBI ke teks. Mesin translasi gerakan isyarat SIBI ke teks memperoleh hasil teks yang cukup baik pada data berlatar belakang hijau. Hasil Nugraha dan Rakun (2022) memperoleh 2,986% WER (Word Error Rate), 83,434% SAcc (Sentence Accuracy), dan TC (Time Computation) menggunakan RetinaNet sebesar 0.038 detik per frame pada data berlatar belakang hijau. Hasil evaluasi juga menemukan kekurangan kualitas hasil prediksi dikarenakan masukkan bingkai yang kabur. Penelitian ini mencoba mengatasi masalah bingkai yang kabur dengan menggabungkan metode deblurring ke dalam sistem mesin translasi gerakan isyarat dan mengukur kinerja dengan WER, SAcc, dan TC. Terjadi penambahan TC akibat penambahan metode deblurring, dan untuk mengurangi TC, digunakan nilai ambang batas agar tidak semua bingkai di-deblur. Peneliti menemukan bahwa dengan menambahkan proses deblurring, terjadi peningkatan kinerja mesin translasi gerakan isyarat dari 2.37% WER dan 87.85% SAcc menjadi 1.95% WER dan 89.28% SAcc (tanpa ambang batas) dan 1.96% WER dan 89.28% SAcc (dengan ambang batas) pada data berlatar belakang hijau. Mesin translasi gerakan isyarat menjadi teks tanpa metode deblurring memerlukan TC 0.8036 detik per frame dan setelah menambahkan metode deblurring menjadi 0.8650 detik per frame (tanpa ambang batas) dan 0.8436 detik per frame (dengan ambang batas). ...... Learning sign language isn’t something easy to do. To help learning sign language, born machine sign language translation to text that can be read. For widely usage, there is a machine for translating gestures into text using a smartphone. Text result from machine translation depend on input sign language sequence frame. This input can be obtain from smartphone video recording. When sign language movement is faster than camera frame rate, recording result become blurry. Blurry record will make machine translation can’t make good prediction. One of the solution to reduce blur on the image is by doing deblurring. This research will use DeblurGAN-v2 as method to reduce image blurry rate on frame and test it on machine sign language SIBI translation to text. Machine sign language SIBI translation to text gain good text result on greenscreen background. Result Nugraha dan Rakun (2022) obtain 2,986% WER (Word Error Rate), 83,434% SAcc (Sentence Accuracy), and TC (Time Computation) using RetinaNet at 0.038 seconds per frame on background greenscreen data. Evaluation result also found a lack of of predictive quality due to blurred frame input. This research attempts to overcome the blurred frame problem by combining deblurring method to inside machine sign language translation system and measure performance with WER, SAcc, and TC. There is an addition of TC due to the addition of the deblurring method and to reduce TC, a threshold value is used so not all frames are deblurred. The researcher found that by adding deblurring process, there was an improvement on machine sign language translation from 2.37% WER and 87.85% SAcc to 1.95% WER and 89.28% SAcc (without threshold) and 1.96% WER and 89.28% SAcc (with threshold) on background greenscreen data. Machine for translating gestures into text without deblurring method need TC 0.8036 seconds per frame and after adding deblurring method become 0.8650 seconds per frame (without threshold) and 0.8436 seconds per frame (with threshold).
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gilbert Lauren
Abstrak :
Pelayanan di supermarket merupakan salah satu hal yang menjadi pertimbangan seseorang dalam menentukan kualitas dari sebuah supermarket. Antrian di supermarket merupakan salah satu penentu dari kualitas layanan yang dimiliki. Antrian tersebut dapat disebabkan berbagai hal, salah satunya adalah lamanya kasir dalam menyelesaikan transaksi yang dilakukan. Semakin lama transaksi berlangsung, semakin lama waktu yang dibutuhkan untuk dibutuhkan seorang pelanggan sehingga menyebabkan antrian terjadi. Salah satu penyebab lamanya transaksi dapat disebabkan karena proses pemindaian produk yang membutuhkan waktu cukup lama. Oleh karena itu, dengan membuat model pemindaian barcode yang cepat dan efisien berbasis deep learning menggunakan object detection, harapannya dapat membuat proses transaksi menjadi lebih cepat sehingga antrian yang terjadi dapat dikurangi. Dalam penilitian ini, model sistem akan membandingkan antara performa model YOLOv5 dengan Faster R-CNN yang kemudian ditambahkan image enhancement (Super Resolution) untuk dibandingkan dengan tujuan mencari tahu performa dan akurasinya. Hasil pengujian model pada tahap pelatihan menunjukkan model YOLOv5 merupakan model yang lebih akurat dan efisien dengan akurasi Mean Average Precission (mAP) sebesar 81,74%, penggunaan waktu pelatihan sebesar 1,6448 jam, dan loss pada epoch/step terakhir sebesar 0,0208. Hasil pengujian model menggunakan image enhancement (super resolution) menunjukkan peningkatan kualitas decode dari 67% menjadi sebesar 75,5% atau peningkatan sebesar 8,5% dengan super resolution tipe RRDB_PSNR. Kemudian hasil pengujian augmentasi rotasi pada pendeteksian barcode diagonal menunjukan peningkatan sangat signifikan dari 2% menjadi 80%. Pada pengujian terakhir dimana dataset yang digunakan sudah dilakukan augmentasi. Model yang di training memiliki penurunan dari mAP yang dihasilkan menjadi 71,7% dari yang sebelumnya sebesar 81,74% atau penurunan sekitar 10,04%......Service in supermarkets is one of the things that a person considers in determining the quality of a supermarket. Queues at supermarkets are one of the determinants of the quality of service they have. The queue can be caused by various things, one of which is the length of time the cashier completes the transaction. The longer the transaction lasts, the longer it will take for a customer to cause a queue to occur. One of the reasons for the length of the transaction can be due to the product scanning process which takes a long time. Therefore, by creating a fast and efficient barcode scanning model based on deep learning using object detection, it is hoped that it can make the transaction process faster so that queues that occur can be reduced. In this research, the system model will compare the performance of the YOLOv5 model with Faster R-CNN which is then added with image enhancement (Super Resolution) for comparison with the aim of finding out its performance and accuracy. The results of model testing at the training stage show that the YOLOv5 model is a more accurate and efficient model with an accuracy of Mean Average Precision (mAP) of 81.74%, training time usage of 1.6448 hours, and loss in the last epoch/step of 0.0208. The results of model testing using image enhancement (super resolution) show an increase in decoding quality from 67% to 75.5% or an increase of 8.5% with super resolution of type RRDB_PSNR.Then the results of the rotational augmentation test on diagonal barcode detection showed a very significant increase from 2% to 80%. In the last test where the dataset used has been augmented. The training model has a decrease from the resulting mAP to 71.7% from the previous 81.74% or a decrease of about 10.04%.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewa Made Sri Arsa
Abstrak :
The chromosome is a set of DNA structure that carry information about our life. The information can be obtained through Karyotyping. The process requires a clear image so the chromosome can be evaluate well. Preprocessing have to be done on chromosome images that is image enhancement. The process starts with image background removing. The image will be cleaned background color. The next step is image enhancement. This paper compares several methods for image enhancement. We evaluate some method in image enhancement like Histogram Equalization (HE), Contrast-limiting Adaptive Histogram Equalization (CLAHE), Histogram Equalization with 3D Block Matching (HE+BM3D), and basic image enhancement, unsharp masking. We examine and discuss the best method for enhancing chromosome image. Therefore, to evaluate the methods, the original image was manipulated by the addition of some noise and blur. Peak Signal-to-noise Ratio (PSNR) and Structural Similarity Index (SSIM) are used to examine method performance. The output of enhancement method will be compared with result of Professional software for karyotyping analysis named Ikaros MetasystemT M . Based on experimental results, HE+BM3D method gets a stable result on both scenario noised and blur image.

Kromosom adalah kumpulan struktur DNA yang membawa informasi makhluk hidup. Informasi yang dapat diperoleh dengan proses Kariotyping. Proses ini membutuhkan citra yang jelas sehingga kromosom dapat dievaluasi dengan baik. Preprocessing harus dilakukan pada citra kromosom melalui penajaman citra. Proses ini dimulai dengan menghapus latar belakang citra. Langkah berikutnya ialah penajaman citra menggunakan metode image enhancement. Makalah ini membandingkan beberapa metode untuk peningkatan citra. Kami mengevaluasi beberapa metode dalam peningkatan gambar seperti Histogram Equalization (HE), Contrast-limiting Adaptive Histogram Equalization (CLAHE), Histogram Equalization with 3D Block Matching (HE+BM3D), dan unsharp masking. Penulis mengevaluasi dan membahas metode terbaik untuk meningkatkan citra kromosom. Oleh karena itu, untuk mengevaluasi metode, gambar asli dimanipulasi dengan penambahan beberapa kebisingan dan blur. Peak Signal-to-noise Ratio (PSNR) and Structural Similarity Index (SSIM) digunakan untuk mengukur kinerja metode. Hasil penajaman dari metode-metode yang dievaluasi akan dibandingkan dengan hasil software profesional untuk analisis kariotipe bernama Ikaros Metasystem T M . Berdasarkan eksperimen diperoleh hasil bahwa HE + BM3D merupakan metode yang paling stabil pada kedua skenario baik citra mengandung noise maupun citra yang kabur.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2017
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library