Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Ristiana Dewi
"ABSTRAK
Kabut merupakan salah satu fenomena cuaca yang dapat mengurangi jarak pandang. Hal ini akan berdampak pada operasional penerbangan (taxiing, take-off, landing). Oleh karena itu, prakiraan kabut diperlukan untuk mendukung keselamatan penerbangan. Tantangan terbesar dalam membuat prakiraan kabut adalah proses atmosfer yang chaos dan tidak pernah sama dari waktu ke waktu. Oleh karena itu penelitian ini mencoba menggunakan metode Deep Learning untuk memprakirakan kejadian kabut di Bandara Wamena. Desain model prakiraan menggunakan data cuaca pengamatan sinoptik per-jam dari Januari 2015 hingga Mei 2018. Variabel cuaca seperti suhu bola kering, suhu bola basah, titik embun, kelembaban relatif, tutupan awan, arah angin, kecepatan angin, jarak pandang, cuaca saat ini, dan jam pengamatan digunakan untuk memprakirakan kejadian kabut atau tidak kabut untuk 3 jam ke depan. Hyperparameter tuning pada optimizer (SGD, Adam), learning rate (1, 0.1, 0.01, 0.001), dan epoch (25, 50, 100) dilakukan untuk proses trial and error mencari model terbaik. Hyperparameter tuning menunjukkan parameter terbaik adalah optimizer Adam, learning rate 0.001, dan epoch 100. Hasil menunjukkan Deep Learning menunjukkan performa yang baik dengan hasil testing mencapai akurasi 92.56% untuk prakiraan kejadian kabut 1 jam kedepan, 88.45% untuk prakiraan kejadian kabut 2 jam kedepan, dan 85.68% untuk prakiraan kejadian kabut 3 jam kedepan. Hasil prakiraan kejadian kabut dengan Deep Learning juga memberikan akurasi yang lebih baik dibandingkan prakiraan TAF yang dibuat oleh forecaster setempat.

ABSTRACT
Fog is one of the weather phenomena that can reduce visibility. This will have an impact on flight operations (taxiing, take-off, and landing). Therefore, fog forecasts are needed to support flight safety. The biggest challenge in making fog forecast is chaotic atmospheric processes that have never been the same over time. This study tries to use the Deep Learning method to predict the occurrence of fog at Wamena Airport. Design forecast models use hourly synoptic observational weather data from January 2015 to May 2018. Weather variables such as dry bulb temperature, wet bulb temperature, dew point, relative humidity, cloud cover, wind direction, wind speed, visibility, present weather, and the observation hours are used to forecast the occurrence of fog or no fog. Hyperparameter tuning of optimizer (SGD, Adam), learning rate (1, 0.1, 0.01, 0.001), and epoch (25, 50, 100) are used for the trial and error to find the best model. Hyperparameter tuning shows the best parameters are Adam optimizer, learning rate 0.001, and epoch 100. The results show Deep Learning has good performance with the results of testing 92.56% accuracy for forecasting the occurrence of fog for next 1 hour, 88.45% for next 2 hour, and 85.68% for next 3 hour. The results of the forecast fog event with Deep Learning also provide better accuracy than the TAF forecasts made by the local forecaster.
"
2020
T55082
UI - Tesis Membership  Universitas Indonesia Library
cover
Roviani Amelia
"Curah hujan menjadi faktor cuaca yang sangat berpengaruh terhadap aktivitas penerbangan, mulai dari saat pesawat akan lepas landas, ketika berada di udara, dan saat akan melakukan pendaratan. Oleh karena itu, penelitian ini bertujuan untuk mengembangkan sebuah model prediksi curah hujan di Bandara Silangit, Tapanuli Utara yang memiliki variasi curah hujan yang tinggi, karena dipengaruhi oleh posisi geografisnya di dekat garis khatulistiwa. Model prediksi curah hujan tersebut dibangun dengan memanfaatkan data dari AWOS dan menerapkan algoritma XGBoost dan selanjutnya dioptimasi dengan menggunakan dua metode, yaitu random search dan bayesian optimization untuk mencari kombinasi hyperparameter optimal dan meningkatkan akurasi model prediksi tersebut. Hasil penelitian menunjukkan bahwa model XGBoost sebelum dioptimasi berhasil mencapai akurasi prediksi 74.8%. Sementara itu, dengan hyperparameter tuning melalui metode bayesian optimization, akurasi model meningkat hingga 76.6%, dengan kombinasi nilai hyperparameter optimal yang didapatkan, diantaranya max_depth: 17, min_child_weight: 3, learning_rate: 0.1, n_estimators: 100, subsample: 0.91, dan colsample_bytree: 0.88. Temuan ini menegaskan potensi yang besar dalam penggunaan teknologi canggih untuk prediksi curah hujan dalam rangka mendukung keselamatan penerbangan di wilayah dengan kondisi cuaca yang kompleks dan dinamis.

Rainfall is a weather factor that significantly affects aviation activities, from takeoff and in-flight operations to landing. Therefore, this study aims to develop a rainfall prediction model for Silangit Airport in North Tapanuli, an area with high rainfall variability due to its geographic location near the equator. The rainfall prediction model is constructed using data from the Automated Weather Observing System (AWOS) and employs the XGBoost algorithm, which is further optimized using two methods: random search and Bayesian optimization. These methods are used to find the optimal hyperparameter combinations and improve the model's prediction accuracy.The results of the study show that the XGBoost model achieved a prediction accuracy of 74.8% before optimization. However, with hyperparameter tuning using Bayesian optimization, the model's accuracy increased to 76.6%. The optimal hyperparameter values obtained were max_depth: 17, min_child_weight: 3, learning_rate: 0.1, n_estimators: 100, subsample: 0.91, and colsample_bytree: 0.88. These findings highlight the significant potential of advanced technology in predicting rainfall, thereby supporting aviation safety in regions with complex and dynamic weather conditions.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ozananda Fachristiary Adji
"Tujuan penelitian ini adalah melakukan studi awal guna memprediksi nilai kerma udara dan half value layer (HVL) pesawat CT scan berdasarkan citra fantom homogen. Penelitian ini dilakukan dengan menggunakan citra homogen dari fantom standar CT scan yang dilakukan ekstraksi fitur GLCM (Gray Level Co-occurence Matrix), dengan data tambahan berupa nilai kVp pengambilan citra. Sebagai label output adalah hasil pengukuran kerma udara dan HVL. Model yang digunakan berbasis artificial neural network, dengan hyperparameter ditentukan berdasarkan teknik hyperparameter tuning dengan menggunakan Teknik Gridsearch. Pencarian hyperparameter berupa fungsi aktivasi, jumlah hidden layer, jumlah hidden unit, kernel initializer, dan optimizer dilakukan dengan Analisa performa hasil. Kualitas performa klasifikasi model artificial neural network menggunakan confusion matrix menunjukkan akurasi sebesar 84,4% pada model yang dilatih menggunakan input fitur GLCM, sedangkan pada model artificial neural network yang menggunakan input fitur GLCM dan kVp menunjukkan akurasi sebesar 100%. Hasil ini menunjukkan bahwa fitur GLCM mampu menghasilkan akurasi yang baik untuk melakukan prediksi kerma udara dan HVL. Namun, jika disertai dengan fitur kVp sebagai input, maka proses training akan menghasilkan akurasi yang sangat baik, dengan gejala dominasi fitur kVp terhadap fitur GLCM.

The goals of this research is to do preliminary study to predict air kerma and half value layer (HVL) of CT scan base on phantom image which has homogeneous characteristic. This research starts with GLCM (Gray Level Co-occurence Matrix) feature extraction process from the phantom image, the kVp value also extracted from the phantom image dicom information. While the target during training is air kerma and HVL measurement resulted from the dosimeter and solid state device. Machine learning model used for this research is artificial neural network (ANN) base Machine Learning model. However, the hyperparameter have not yet been found. Thus, this problem could be solved by using Hyperparameter tuning technique, specifically using Gridsearch with variety of activation function, hidden layers, hidden units, kernel initializer, and optimizer as the parameter guideline. The performance of classification model is measured using confusion matrix technique. The classification performance show that the model which trained using GLCM feature only has 84.4% accuracy to predict air kerma and HVL. While, the classification performance show that the model which trained using GLCM feature and kVp that extracted from the dicom information has 100% accuracy to predict air kerma and HVL. Although, the model that train using GLCM feature and kVp can predict much better than the model which trained using GLCM feature only, it shows that GLCM feature is dominated by kVp feature that extracted from the dicom information."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Steven Nathaniel Trosno
"Pemilihan umum presiden merupakan momen krusial dalam demokrasi, di mana opini publik memainkan peran penting dalam menentukan hasil. Dalam era digital, media sosial menjadi platform utama bagi masyarakat untuk menyampaikan pandangan dan opini mereka. Penelitian ini bertujuan untuk menganalisis sentimen masyarakat terhadap pemilihan bakal calon presiden Indonesia 2024, yaitu Ganjar, Prabowo, dan Anies melalui media sosial X menggunakan model IndoBERT. Data dikumpulkan dari media sosial X melalui teknik crawling untuk memastikan relevansi data. Model IndoBERT diterapkan untuk melakukan analisis sentimen terhadap data teks yang diklasifikasikan ke dalam kategori positif, negatif, dan netral. Hasil menunjukkan bahwa model dengan hyperparameter terbaik (learning rate 5e-6 dan data splitting 0.2) mencapai akurasi 94.66% dalam mengklasifikasikan sentimen, dengan nilai precision, recall, dan f1-score yang konsisten. Meskipun demikian, terdapat kecenderungan bahwa model memprediksi kurang atau memprediksi berlebih jumlah data pada semua kandidat. Analisis dari precision-recall curve menunjukkan bahwa ketidakseimbangan data memiliki pengaruh terhadap performa model, namun model dengan hyperparameter terbaik tetap mencapai nilai AUC 0.92 terhadap ketidakseimbangan data tersebut. Analisis sentimen ini memberikan wawasan penting bagi partai politik dalam menentukan strategi kampanye dan mengidentifikasi kandidat yang paling disukai oleh masyarakat dalam pemilihan umum presiden 2024.

The presidential election is a crucial moment in democracy, where public opinion plays a vital role in determining the outcome. In the digital era, social media has become a primary platform for people to express their views and opinions. This research aims to analyze public sentiment towards the 2024 Indonesian presidential candidates—Ganjar, Prabowo, and Anies—through social media platform X using the IndoBERT model. Data was collected from social media X through crawling techniques to ensure data relevance. The IndoBERT model was applied to perform sentiment analysis on the text data, classifying it into positive, negative, and neutral categories. The results show that the model with the best hyperparameters (learning rate of 5e-6 and data splitting of 0.2) achieved 94.66% accuracy in sentiment classification, with consistent precision, recall, and f1-score values. However, there is a tendency for the model to underpredict or overpredict the amount of data for all candidates. Analysis of the precision-recall curve indicates that data imbalance affects the model's performance, but the model with the best hyperparameters remains achieved AUC 0.92, indicating robustness against this imbalance. This sentiment analysis provides important insights for political parties in determining campaign strategies and identifying the most favored candidates by the public in the 2024 presidential election."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewita Oktavia Nuur Marwan
"Internet of Things (IoT) merupakan sebuah konsep di mana berbagai perangkat komputasi saling terhubung melalui internet dan memiliki kemampuan untuk mengumpulkan atau mengirimkan data. Perluasan dan kecepatan perangkat komputasi menggunakan jaringan Wi-Fi dapat menghasilkan data yang kompleks dan berdimensi tinggi pada sistem IoT. Data yang berdimensi tinggi dapat menimbulkan beberapa kendala dan perangkat IoT akan menghindari untuk melakukan tugas yang komputasinya berat. Semakin kompleksnya sistem IoT, semakin sulit bagi sistem untuk mengidentifikasi dan menemukan serangan siber. Salah satu upaya yang paling umum digunakan untuk melindungi sistem IoT adalah Intrusion detection system (IDS). Pada penelitian ini dilakukan model berbasis machine learning untuk mengembangkan IDS menggunakan dataset AWID2 dengan tipe “CLS” yang berisikan 2 juta lalu lintas trafik pada jaringan WI-Fi yang dikelompokkan ke dalam empat kelas yaitu, normal, impersonation, injection, dan flooding. Random forest merupakan salah satu teknik ensemble atau gabungan dari sejumlah model decision tree yang memiliki keunggulan-keunggulan dibandingkan dengan metode machine learning lainnya, yaitu dapat mencegah terjadinya overfitting, memiliki waktu komputasi yang rendah, dan memiliki kemampuan lebih baik dalam mengelola dataset yang tidak seimbang. Untuk mengatasi data berdimensi tinggi, dilakukan seleksi fitur mutual information pada algoritma random forest untuk mendapatkan hasil model klasifikasi yang optimal. Hasil dari penelitian menunjukkan bahwa metode seleksi fitur mutual information dengan menggunakan 30 fitur terbaik pada algoritma random forest dengan hyperparameter-tuning random search terbukti dapat meningkatkan performa model klasifikasi dan efisiensi waktu jika dibandingkan menggunakan algoritma random forest tanpa seleksi fitur. Nilai metrik yang diperoleh oleh kombinasi tersebut adalah dengan nilai accuracy = 99,95276%, macro average F1-score = 99,76335%, macro average recall = 99,97962%, dan macro average presicion = 99,54935% dengan waktu prediksi 6,112 detik.

The Internet of Things (IoT) is a concept where various computing devices are interconnected via the internet and have the capability to collect or transmit data. The expansion and speed of computing devices using Wi-Fi networks generate complex and high-dimensional data in IoT systems. High-dimensional data in datasets pose several challenges, as IoT devices tend to avoid tasks that are computationally intensive. As IoT systems become more complex, it becomes increasingly difficult for the system to identify and detect cyber attacks. One of the most common efforts to protect IoT systems is the Intrusion Detection System (IDS). In this study, a machine learning-based model is developed to create an IDS using the AWID dataset with the “CLS” type, which contains 2 million network traffic records on Wi-Fi networks categorized into four classes: normal, impersonation, injection, and flooding. Random forest is an ensemble technique or a combination of multiple decision tree models that has advantages over other machine learning methods, such as preventing overfitting, having low computational time, and having better capabilities in handling imbalanced datasets. To address high-dimensional data, mutual information feature selection is applied to the random forest algorithm to achieve optimal classification model results. The results of the study indicate that the mutual information feature selection method using the top 30 features in the random forest algorithm with random search hyperparameter tuning can improve the performance of the classification model and time efficiency compared to using the random forest algorithm without feature selection. The metrics obtained by this combination are accuracy = 99.95276%, macro average F1-score = 99.76335%, macro average recall = 99.97962%, and macro average precision = 99.54935% with a prediction time of 6.112 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marwah Zulfanny Alief
"Skripsi ini membahas mengenai penerapan model Siamese Manhattan Convolutional Neural Network dan Long Short-Term Memory (CNN-LSTM) untuk Sistem Penilaian Esai Otomatis (SIMPLE-O). Model deep learning sistem dikembangkan untuk dapat memprediksi nilai ujian esai Bahasa Jepang. Dari pengujian beberapa skenario dengan variasi hyperparameter, model SIMPLE-O dengan kernel sizes 5, jumlah filter 64, pool size sebesar 4, LSTM hidden units 25, batch size 50, training diulang sebanyak 50 epoch, dan optimizer SGD dengan learning rate 0,01 menghasilkan akurasi prediksi tertinggi, yaitu 70.07%. Selain itu, ditemukan pula pemanfaatan set hyperparameter hasil pencarian menggunakan hyperparameter tuning model dengan algoritma TPE dan implementasi library Hyperopt efektif menghasilkan peningkatan akurasi training- validasi sebesar 30.98% dan 18.43% dibandingkan dengan model dasar.

This thesis discusses the application of the Siamese Manhattan Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM) model for the Automatic Essay Grading System (SIMPLE-O). The deep learning model was developed to predict Japanese essay test scores. From testing several scenarios with hyperparameter variations, the SIMPLE-O model with kernel sizes of 5, number of filters 64, pool size of 4, LSTM hidden units of 25, batch size of 50, repeated training of 50 epochs, and the SGD optimizer with a learning rate of 0.01 produces the highest prediction accuracy, which is 70.07%. In addition, it was also found that the utilization of the hyperparameter set founded with hyperparameter tuning model which used TPE algorithm and the implemented with Hyperopt library effectively resulted in an increase in training-validation accuracy of 30.98% and 18.43% compared to the accuracy of base model."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alifya Zhafira Ananda
"Prediksi vessel turnaround time (VTT) di pelabuhan merupakan langkah strategis untuk meningkatkan efisiensi operasional dan mendukung pengambilan keputusan berbasis data. Penelitian ini berfokus pada rancang bangun sistem prediksi berbasis machine learning untuk memperkirakan durasi waktu tunggu kapal, melalui pengembangan model regresi dengan pendekatan yang sistematis. Model dirancang dan dievaluasi dengan membandingkan rentang data historis (5 tahun vs 10 tahun), dua metode seleksi fitur—RFE (Recursive Feature Elimination) dan SHAP (SHapley Additive exPlanations)—serta penerapan hyperparameter tuning untuk mengoptimalkan performa.
Evaluasi dilakukan secara menyeluruh menggunakan 50 variasi model seed dan pendekatan rolling time window. Hasil menunjukkan bahwa penggunaan dataset 10 tahun dan model LightGBM memberikan performa terbaik dengan RMSE validasi sebesar 2.7882 jam. SHAP menghasilkan performa hampir setara dengan RFE meskipun menggunakan jumlah fitur yang lebih sedikit. Setelah proses tuning, sistem prediktif yang dirancang menjadi jauh lebih stabil antar pengulangan (RMSE validasi: 2.7865, IQR RMSE: 0.0099), dan tetap menunjukkan hasil yang baik pada data uji serta evaluasi lintas waktu. Secara keseluruhan, rancang bangun sistem prediksi VTT ini membuktikan bahwa kombinasi data historis yang memadai, pemilihan fitur yang tepat, dan pengaturan parameter yang optimal mampu menghasilkan model yang akurat, konsisten, dan siap diterapkan dalam operasional pelabuhan secara nyata.

Predicting vessel turnaround time (VTT) at ports is a strategic effort to improve operational efficiency and support data-driven decision-making. This study focuses on the design and development of a predictive system based on machine learning to estimate vessel waiting durations, through a systematic approach to regression model construction. The models are designed and evaluated by comparing different historical data ranges (5 years vs. 10 years), two feature selection methods—RFE (Recursive Feature Elimination) and SHAP (SHapley Additive exPlanations)—as well as the implementation of hyperparameter tuning to optimize performance.
Comprehensive evaluation was carried out using 50 model seed variations and a rolling time window approach. The results show that the use of a 10-year dataset and the LightGBM model achieved the best performance, with a validation RMSE of 2.7882 hours. SHAP yielded nearly comparable performance to RFE, despite using fewer features. After tuning, the predictive system became significantly more stable across repetitions (validation RMSE: 2.7865, IQR RMSE: 0.0099), and consistently produced reliable results on the test set as well as in various time-based evaluation windows. Overall, this predictive system design for VTT demonstrates that the combination of sufficient historical data, appropriate feature selection, and optimal parameter configuration can produce a model that is accurate, robust, and ready for real-world port operations.
"
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library