Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Auriwan Yasper
Abstrak :
Klasifikasi curah hujan sangat membantu masyarakat dan instansi terkait dalam mengambil kebijakan seperti pengelolaan sumber daya air, transportasi, pertanian dan pencegahan bencana. Model yang sudah pernah digunakan dalam melakukan klasifikasi curah hujan yaitu XGBoost, telah terbukti mampu melakukan klasifikasi dengan efektif, namun masih memerlukan tuning pada hyperparameter-nya untuk meningkatkan performa model. Penelitian ini bertujuan untuk merancang metode klasifikasi curah hujan dengan model XGBoost dan menemukan nilai learning rate terbaik untuk klasifikasi curah hujan. Parameter max depth, dan n estimator ditetapkan berdasarkan penelitian yang sudah pernah dilakukan. Model ini dibangun berdasarkan data historis curah hujan selama 3 bulan setiap jam, yang telah dikumpulkan oleh peralatan Automated Weather Observed System (AWOS) di Stasiun Meteorologi Kota Pontianak. Pencarian hyperparameter menggunakan metode coarse to fine, yaitu pencarian kasar ke pencarian halus. Pencarian kasar menggunakan RandomizedSearchCV, sedangkan pencarian halus dengan GridSearchCV. Model dievaluasi dengan metrik Accuracy, precision, recall, dan F1-score. Evaluasi menunjukkan bahwa model memilki metrik evaluasi yang baik dengan persentase diatas 80% untuk setiap kasus pembagian data. Nilai learning rate terbaik dengan akurasi tertinggi yang didapatkan pada model dengan 2040 data set adalah pada kasus klasifikasi biner, yaitu sebesar 0.043 dengan akurasi pada data latih 90.19%. ......The classification of rainfall is very helpful for the community and related agencies in making policies such as managing water resources, transportation, agriculture, and disaster prevention. The model that has been used to classify rainfall, namely XGBoost, has proven to be able to classify effectively but still requires tuning its hyperparameters to improve model performance. This study aims to design a rainfall classification method using the XGBoost model and find the best learning rate for rainfall classification. The max depth and n estimator parameters are determined based on research that has been done. This model was built based on historical rainfall data for 3 months every hour, which has been collected by the Automated Weather Observed System (AWOS) equipment at the Pontianak City Meteorological Station. The hyperparameter search uses the coarse-to-fine method, which is a coarse-to-fine search. The coarse search uses RandomizedSearchCV, while the fine search uses GridSearchCV. The model is evaluated with Accuracy, precision, recall, and F1-score metrics. The evaluation shows that the model has good evaluation metrics with percentages above 80% for each case of data sharing. The best learning rate value with the highest accuracy obtained in the model with the 2040 dataset is in the binary classification case, which is equal to 0.043 with an accuracy of 90.19% of the training data.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ristiana Dewi
Abstrak :
ABSTRAK
Kabut merupakan salah satu fenomena cuaca yang dapat mengurangi jarak pandang. Hal ini akan berdampak pada operasional penerbangan (taxiing, take-off, landing). Oleh karena itu, prakiraan kabut diperlukan untuk mendukung keselamatan penerbangan. Tantangan terbesar dalam membuat prakiraan kabut adalah proses atmosfer yang chaos dan tidak pernah sama dari waktu ke waktu. Oleh karena itu penelitian ini mencoba menggunakan metode Deep Learning untuk memprakirakan kejadian kabut di Bandara Wamena. Desain model prakiraan menggunakan data cuaca pengamatan sinoptik per-jam dari Januari 2015 hingga Mei 2018. Variabel cuaca seperti suhu bola kering, suhu bola basah, titik embun, kelembaban relatif, tutupan awan, arah angin, kecepatan angin, jarak pandang, cuaca saat ini, dan jam pengamatan digunakan untuk memprakirakan kejadian kabut atau tidak kabut untuk 3 jam ke depan. Hyperparameter tuning pada optimizer (SGD, Adam), learning rate (1, 0.1, 0.01, 0.001), dan epoch (25, 50, 100) dilakukan untuk proses trial and error mencari model terbaik. Hyperparameter tuning menunjukkan parameter terbaik adalah optimizer Adam, learning rate 0.001, dan epoch 100. Hasil menunjukkan Deep Learning menunjukkan performa yang baik dengan hasil testing mencapai akurasi 92.56% untuk prakiraan kejadian kabut 1 jam kedepan, 88.45% untuk prakiraan kejadian kabut 2 jam kedepan, dan 85.68% untuk prakiraan kejadian kabut 3 jam kedepan. Hasil prakiraan kejadian kabut dengan Deep Learning juga memberikan akurasi yang lebih baik dibandingkan prakiraan TAF yang dibuat oleh forecaster setempat.
ABSTRACT
Fog is one of the weather phenomena that can reduce visibility. This will have an impact on flight operations (taxiing, take-off, and landing). Therefore, fog forecasts are needed to support flight safety. The biggest challenge in making fog forecast is chaotic atmospheric processes that have never been the same over time. This study tries to use the Deep Learning method to predict the occurrence of fog at Wamena Airport. Design forecast models use hourly synoptic observational weather data from January 2015 to May 2018. Weather variables such as dry bulb temperature, wet bulb temperature, dew point, relative humidity, cloud cover, wind direction, wind speed, visibility, present weather, and the observation hours are used to forecast the occurrence of fog or no fog. Hyperparameter tuning of optimizer (SGD, Adam), learning rate (1, 0.1, 0.01, 0.001), and epoch (25, 50, 100) are used for the trial and error to find the best model. Hyperparameter tuning shows the best parameters are Adam optimizer, learning rate 0.001, and epoch 100. The results show Deep Learning has good performance with the results of testing 92.56% accuracy for forecasting the occurrence of fog for next 1 hour, 88.45% for next 2 hour, and 85.68% for next 3 hour. The results of the forecast fog event with Deep Learning also provide better accuracy than the TAF forecasts made by the local forecaster.
2020
T55082
UI - Tesis Membership  Universitas Indonesia Library
cover
Wahyu Hutomo Nugroho
Abstrak :
Proses segmentasi organ secara manual memakan waktu dan hasilnya subyektif terhadap definisi batas-batas kontur. Pemanfaatan teknologi Machine Learning (ML) berjenis 3D convolutional neural network (3D CNN) untuk mensegmentasi organ secara otomatis dapat mempercepat dan menstandarisasi hasil segmentasi organ. Penelitian ini mengimplementasilan network ML berbasis VoxResNet dan memanfaatkan 60 dataset CT Scan toraks dari Grand Callenge AAPM 2017 untuk melatih, memvalidasi, dan menguji model-model ML dengan berbagai variasi hyperparameter. Pengaruh variasi hyperparameter terhadap hasil segmentasi model juga dipelajari. Dataset dibagi menjadi 3 yaitu, 36 untuk perlatihan, 12 untuk validasi, dan 12 untuk pengujian. Dalam penelitian ini paru-paru kiri dan paru-paru kanan dijadikan satu jenis OAR bernama paru-paru, esophagus dan spinal cord dijadikan satu OAR bernama ESP, sedangkan jantung tetap OAR tersendiri. Variasi hyperparameter adalah variasi ukuran patch, jumlah batch, dan weight class. Hasil segmentasi model-model dievaluasi dan diperbandingkan untuk mencari model terbaik dengan hyperparameter-nya yang mampu menghasilkan kualitas hasil segmentasi organ terbaik. Kemampuan network dalam proses perlatihan dan validasi dievaluasi menggunakan kurva pembelajaran. Kualitas hasil segmentasi model organ dievaluasi menggunakan boxplot distribusi populasi nilai metrik Dice Similiarity Coefficient (DSC) dan Housdorf Distance (HD) setiap slice. Peningkatan atau penurunan kinerja model akibat variasi hyperparameter dinilai menggunakan skor peningkatan metrik. Terakhir, metrik DSC dan HD95 secara 3D hasil segmentasi model terbaik dibandingkan dengan hasil segmentasi oleh interrater variability AAPM 2017 dan hasil segmentasi team virginia. Hasil kurva pembelajaran tidak mengalami underfitting menunjukkan bahwa network mampu mempelajari data perlatihan dengan baik. Overfitting terjadi pada model organ jantung dan ESP. Hasil eksperimen variasi ukuran patch menunjukkan bahwa besar ukuran patch tidak selalu linier dengan kinerja moukuran patch menunjukkan bahwa besar ukuran patch tidak selalu linier dengan kinerja model. Model ukuran patch tengah memberikan kualitas distribusi metrik dan skor paling baik dibandingkan model ukuran patch terkecil dan terbesar pada semua OAR dengan skor 11, 13, dan 13 dari 16. Hasil eksperimen variasi jumlah batch menunjukkan bahwa peningkatan jumlah batch tidak selalu berdampak positif terhadap kinerja model. Untuk model jantung ukuran patch terbesar, peningkatan batch dapat meningkatkan skor dari 2 menjadi 12. Untuk model ESP ukuran patch terbesar, peningkatan batch menurunkan skor dari 13 menjadi 2. Hasil eksperimen variasi weight class (W) menunjukkan bahwa baik model jantung maupun ESP cenderung memberikan distribusi metrik dan skor terbaik di sekitar W = [1,3.67] atau W = [1, C1 < 11]. Dibandingkan dengan interrater variability AAPM, model jantung terbaik menghasilkan nilai metrik yang comparable, yaitu untuk DSC 3D 0.932 ± 0.016 = 0.931 ± 0.015 dan untuk HD95 4.00 ± 0.25 < 6.42 ± 1.82. Sedangkan untuk model paru-paru memberikan metrik lebih baik, yaitu 0.964 ± 0.025 > 0.956 ± 0,019 dan 4,72± 0,21 < 6.71 ± 3,91. Dibandingkan dengan team virginia, model jantung terbaik berhasil memberikan nilai metrik yang lebih baik. yaitu 0.932 ± 0.016 > 0.925 ± 0.015 dan 4.00 ± 0.25 < 6.57 ± 1.50, sedangkan model ESP terbaik menghasilkan metrik yang comparable, yaitu 0.815 ± 0.049 = 0,810 ± 0,069 dan 4,68 ± 0,17 < 8,71 ± 10,59. Dari hasil-hasil ini memberikan potensi adanya perpaduan ukuran patch, jumlah batch, dan weight class tertentu yang dapat menyebabkan hasil segmentasi model ukuran patch lebih kecil dapat mengimbangi hasil segmentasi model ukuran patch lebih besar sehingga tuntutan akan perangkat dengan spesifikasi tinggi dan mahal dapat berkurang. ......The process of manual organ segmentation is time consuming and the results are subjective in term of definition of contour boundaries. The utilization of Machine Learning (ML) technology using 3D convolutional neural network (3D CNN) to segment organs automatically can speed up the procces as well as standardizing the results of organ segmentation. This study implements a VoxResNet-based ML network and utilizes 60 thoracic CT scan datasets obtained from Grand Callenge AAPM 2017 to train, validate, and test ML models with various hyperparameter variations. The effects of hyperparameter variations on the segmentation results of models are also studied. The dataset is divided into 3 parts, namely 36 for training, 12 for validation, and 12 for testing. In this study the left lung and right lung were combined into one type of OAR called the lung, the esophagus and spinal cord were combined into one OAR called ESP, while the heart remained a separate OAR. Hyperparameter variations are variations in patch size, number of batches, and weight loss. The segmentation results of the models are evaluated and compared each other to find the best model and it’s hyperparameters which is able to produce the best segmentation’s quality. The ability of the network in training and validation procceses is evaluated using learning curve. The quality of the organ model’s segmentation results is evaluated using boxplot of population’s distribution of the Dice Similiarity Coefficient (DSC) and Housdorf Distance (HD) metrics for each slice. The increases or decreases in model performance due to variations in hyperparameters are assessed using the metric improvement score. Finally, the 3D DSC and HD95 metrics of the best model’s segmentation results are compared to the results of segmentation by the AAPM 2017’s interrater variability and to the segmentation results by team virginia. There is no underfitting of learning curve indicates that the network is able to learn the training data. Overfitting occurs in the heart and ESP models. The experimental results from patch size variations show that the size of the patch is not always linear with the performance of the model. The middle patch sized models give the best metric distribution’s quality as well as scores compared to the smallest and largest patch sized models for all OARs with scores of 11, 13, and 13 out of 16. The experimental results from batch number variations show that an increase in batch does not always have a positive impact on model performance. For the largest patch sized heart’s model, the increase increases the score from 2 to 12. For the largest patch sized ESP's model, the increase reduces the score from 13 to 2. The results from variations in weight loss (W) experiment show that both heart’s and ESP's models tend to provide the best distributions in term of metrics and scores around W = [1, 3.67] or W = [1, C1 < 11]. By comparing with AAPM's interrater’s variability, the best heart model produces comparable metric's result, that is 0.932 ± 0.016 = 0.931 ± 0.015 for DSC 3D and 4.00 ± 0.25 < 6.42 ± 1.82 for HD95. The best lungs model produces better metrics, that is 0.964 ± 0.025 > 0.956 ± 0,019 and 4,72 ± 0,21 < 6.71 ± 3,91. By comparing with team virginia's results, the best heart model produces better results that is 0.932 ± 0.016 > 0.925 ± 0.015 and 4.00 ± 0.25 < 6.57 ± 1.50. Meanwhile the best ESP model produces comparable results that is 0.815 ± 0.049 = 0,810 ± 0,069 and 4,68 ± 0,17 < 8,71 ± 10,59. The results of this study suggests that there is a certain combination of patch size, batch, and weight class by which enables smaller patch sized model to produce comparable metric's result produced by larger patch sized model thus decreasing the need to use higher specificationed and expensive computer.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gede Pajar Bahari
Abstrak :
Metode Machine Learning sangat bermanfaat untuk menyelesaikan berbagai masalah, terutama pada masalah big data. Salah satu masalah yang terkait dengan big data adalah prediksi klaim asuransi di industri asuransi. XGBoost adalah metode machine learning yang menggunakan pendekatan ensemble learning dengan decision tree sebagai model dasarnya. XGBoost terdiri dari beberapa hyperparameter yang nilainya perlu ditentukan sebelum proses training. Partial grid search adalah optimasi hyperparameter yang biasanya digunakan untuk XGBoost. Random search adalah optimasi hyperparameter yang menentukan nilai hyperparameter secara random. Pada penelitian ini, diterapkan dan dianalisis metode pengoptimalan lain untuk XGBoost, yaitu Bayesian search untuk prediksi pengajuan klaim asuransi (dengan klasifikasi) dan besarnya klaim asuransi yang diajukan (dengan regresi). Tujuan dari penelitian ini yaitu membandingan performa ketiga metode optimasi hyperparameter pada XGBoost: random search, partial grid search, dan Bayesian search pada klasifikasi dan regresi. Hasil simulasi menunjukkan bahwa partial grid search memberikan akurasi yang sedikit lebih baik dibandingkan dengan random search dan Bayesian search. Namun, waktu running pada Bayesian search jauh lebih cepat daripada partial grid search. Random search memiliki akurasi dan waktu komputasi yang sedikit kurang bagus dibandingkan dengan Bayesian search. ......Machine Learning Method is very useful for solving various problems, especially in the big data problem. One of the problems associated with big data is the prediction of insurance claims in the insurance industry. XGBoost is a machine learning method that uses an ensemble learning approach with a decision tree as its basic model. XGBoost consists of several hyperparameters which values need to be determined before the training process. Partial grid search is a hyperparameter optimization approach which is usually used for XGBoost. Random search is a hyperparameter optimization method which determines the value of hyperparameter randomly. In this study, another optimization method for XGBoost called Bayesian search is applied and analyzed for predicting insurance claims submissions (by classification) and the size of insurance claims submitted (by regression The purpose of this study is to compare the performance of the three hyperparameter optimization methods on XGBoost: random search, partial grid search, and Bayesian search on classification and regression. The simulation results show that partial grid search gives a slightly better accuracy compared to random search and Bayesian search. However, the running time on Bayesian search is much faster than partial grid search. Random search has an accuracy and computation time that is a little less good compared to Bayesian search.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Kinanthy Dwi Pangesty
Abstrak :
Manajemen rumah sakit yang baik dapat meningkatkan kualitas pelayanan medis. Rumah sakit merupakan institusi pelayanan kesehatan yang menyelenggarakan pelayanan kesehatan perorangan secara paripurna yang menyediakan pelayanan rawat inap, rawat jalan, dan gawat darurat. Rumah sakit diharuskan untuk mengelola berbagai jenis sumber daya untuk meningkatkan efisiensi manajemen secara keseluruhan, seperti mengelola jadwal tim dan staf medis, manajemen tempat tidur, dan jalur perawatan. Penyakit jantung merupakan penyakit penyebab kematian tertinggi di dunia yang sangat membutuhkan penanganan medis dengan segera. Penyakit jantung membutuhkan salah satu pelayanan pada rumah sakit yaitu pelayanan rawat inap. Pelayanan rawat inap melibatkan sumber daya yang berkaitan dengan biaya dan waktu. Dengan adanya prediksi durasi rawat inap pada pasien penyakit jantung akan membantu pihak pasien dalam menyiapkan kebutuhan yang diperlukan serta pihak rumah sakit dalam manajemen tempat tidur rawat inap pasien penyakit jantung. Pada penelitian ini, dilakukan prediksi durasi rawat inap pasien penyakit jantung dengan menggunakan pendekatan ensemble machine learning dengan tujuan untuk mendapatkan metode terbaik dalam memprediksi dengan membandingkan dua metode ensemble machine learning yaitu random forest dan extreme gradient boosting, serta metode logistic regression sebagai baseline. Kemudian tujuan lainnya yaitu untuk mengetahui faktor yang paling berpengaruh terhadap durasi rawat inap. Ketiga metode yang digunakan merupakan bagian dari supervised machine learning. Selain itu, dilakukan optimasi hyperparameter untuk meningkatkan performa dari hasil model prediksi. Setelah membuat model prediksi dan melakukan evaluasi terhadap model, didapatkan metode terbaik yaitu random forest dengan optimasi hyperparameter yang mendapat hasil akurasi sebesar 83,9% dan nilai AUROC sebesar 92,86% serta faktor-faktor yang paling berpengaruh terhadap durasi rawat inap antara lain jumlah limfosit total, urea, trombosit, hemoglobin, glukosa, usia, kreatinin, peptida natriuretik otak, fraksi ejeksi dan hipertensi. ...... Good hospital management can improve the quality of medical services. The hospital is a health service institution that provides complete individual health services in inpatient, outpatient, and emergency services. Hospitals are required to manage various types of resources to improve overall management efficiency, such as managing medical team and staff schedules, bed management, and clinical pathways. Heart disease is the leading cause of death in the world and requires immediate medical treatment. Heart disease requires one of the services at the hospital, namely inpatient services. Inpatient services involve resources related to cost and time. Predicting the duration of hospitalization in heart disease patients will help the patient prepare for the necessary needs and the hospital in managing inpatient beds for heart disease patients. In this study, the prediction of the duration of hospitalization for heart disease patients using an ensemble machine learning approach was carried out with the aim of getting the best method of predicting by comparing two ensemble machine learning methods, namely random forest and extreme gradient boosting, as well as the logistic regression method as a baseline. Then another goal is to find out the most influential factors on the duration of hospitalization. The three methods used are part of supervised machine learning. In addition, hyperparameter optimization is carried out to improve the performance of the prediction model results. After making a predictive model and evaluating the model, the best method was obtained, namely random forest with hyperparameter optimization which obtained an accuracy of 83.9% and an AUROC value of 92.86% and the factors that most influence the duration of hospitalization include the number of total lymphocytes, urea, platelets, hemoglobin, glucose, age, creatinine, brain natriuretic peptide, ejection fraction and hypertension.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Helmi Alfarel
Abstrak :
Diagnosa dan pengobatan kanker pada tahap jinak adalah hal yang sangat penting. Akhir akhir ini, ahli patologi menggunakan bantuan komputer dengan teknologi machine learning untuk membantu mendiagnosis pasien menggunakan citra medis. Namun, jumlah data yang dibutuhkan machine learning besar dan biasanya jumlah citra medis yang tersedia terbatas. Transfer learning adalah teknik machine learning yang dapat mengatasi terbatasnya jumlah data. Transfer learning adalah teknik yang mentransfer pengetahuan yang didapat saat model mempelajari untuk menyelesaikan suatu masalah dan digunakan untuk menyelesaikan masalah lain. Pada machine learning, pemilihan arsitektur model dan hyperparameter lainnya sangat berpengaruh pada performa model. Penelitian ini melakukan hyperparameter optimization terhadap CNN yang mengklasifikasi citra histopatologi berisi jaringan sehat dan jaringan kanker. Penelitian ini menemukan CNN dengan arsitektur DenseNet121, freeze rate 75%, 0 lapis classifier, learning rate 0.001, dan optimizer RMSProp mempunyai performa keakuratan terbaik pada 98% dengan waktu latih selama 19.5 detik. ......Diagnosis and treatment of cancer at the benign stage is very important. Recently, pathologists are using computer-aided diagnostics with machine learning techniques to diagnose patients from medical images. However, the amount of data required for machine learning is large and the number of medical images available is usually limited. Transfer learning is a machine learning technique that can handle limited amounts of data. Transfer learning is a technique that transfers knowledge gained when learning to solve a problem, to use it to solve a different problem. In machine learning, choosing an optimum architecture and hyperparameters is very important because it affects the performance of the network. In this research, we did a hyperparameter optimization of a CNN that classifies images that contain healthy tissue and cancer tissue. The research concludes that CNN with architecture DenseNet121, freeze rate 75%, zero hidden layer on classifier, learning rate 0.001, and optimizer RMSProp have the best performance with 98% accuracy and 19.5 seconds training time.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajar Henri Erasmus Ndolu
Abstrak :
Dengan perkembangan teknologi informasi yang pesat saat ini, serangan siber terhadap jaringan semakin meningkat dan menyebabkan kerugian finansial yang signifikan. Oleh karena itu, sistem deteksi intrusi (IDS) berbasis anomali menggunakan pembelajaran mesin menjadi salah satu pendekatan untuk mendeteksi serangan siber. Tetapi, penggunaan algoritma tunggal dalam IDS memiliki kekurangan dalam mendeteksi jenis serangan yang memiliki kelas minoritas dalam dataset. Selain itu, penggunaan dataset yang tidak seimbang dan tidak mencerminkan kondisi saat ini juga mempengaruhi kinerja IDS. Untuk meningkatkan kinerja IDS, diusulkan metode hibrid dengan menggunakan Long Short Term Memory (LSTM) dan Random Forest (RF), dengan dataset terbaru CIC-CSE-IDS2018. Dalam pembentukan model hibrid, model lapisan satu menggunakan LSTM untuk klasifikasi biner, mengklasifikasikan aliran data sebagai data normal atau data serangan. Data normal diklasifikasikan kembali dengan model lapisan dua dan data serangan diklasifikasikan kembali dengan model lapisan tiga. Jika hasil model lapisan dua diklasifikasikan sebagai data normal, maka merupakan hasil akhir, dan jika diklasifikasikan sebagai data serangan maka diklasifikasikan kembali dengan model lapisan tiga secara multikelas menggunakan RF. Hasil klasifikasi multikelas lapisan tiga merupakan hasil akhir dari model hibrid ini. Berdasarkan pengujian dan analisis, model hibrid dengan evaluasi terbaik di peroleh menggunakan dataset dengan rasio 3 : 1. Model hibrid ini mencapai hasil klasifikasi multi kelas dengan accuracy 99,7618%, precision 99,1901%, recall 96,8809% dan f1-score 97,9508%. ......With today's rapid development of information technology, cyber attacks against networks are increasing and causing significant financial losses. Therefore, an anomaly-based intrusion detection system (IDS) using machine learning is one approach to detecting cyber attacks. However, the use of a single algorithm in IDS has drawbacks in detecting types of attacks that have a minority class in the dataset. In addition, the use of unbalanced datasets that do not reflect current conditions also affects IDS performance. To improve IDS performance, a hybrid method is proposed using Long Short Term Memory (LSTM) and Random Forest (RF), with the latest CIC-CSE-IDS2018 dataset. In the hybrid model, the layer one model uses LSTM for binary classification, classifying the data stream as normal data or attack data. Normal data is reclassified by layer two model and attack data is reclassified by layer three model. If the result of the second layer model is classified as normal data, then it is the final result, and if it is classified as attack data then it is reclassified with the third layer model in a multiclass manner using RF. The results of the three layer multiclass classification are the final results of this hybrid model. Based on testing and analysis, the hybrid model with the best evaluation was obtained using a dataset with a ratio of 3:1. This hybrid model achieved multiclass classification results with 99.7618% accuracy, 99.1901% precision, 96.8809% recall and f1-score 97.9508%.
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yudistira
Abstrak :
Dalam penerapan statistika di masyarakat, metode pengambilan sampel dilakukan untuk mendapatkan informasi tentang populasi yang menjadi fokus pengamatan. Namun karena keterbatasan dalam menjalankan metode pengambilan sampel, banyaknya sampel tersebut seringkali tidak mencukupi untuk mendapatkan taksiran yang presisi untuk populasi. Oleh karena itu, dikembangkan beberapa metode alternatif untuk menaksir parameter tersebut dengan area sampel yang jumlahnya kecil yang dibahas dalam topik Small Area Estimation. Dalam skripsi ini, dijelaskan tentang bagaimana mencari taksiran titik dari rata-rata populasi pada Small Area dengan metode Empirical Bayes berdasarkan model tingkat area. Secara umum, metode ini diawali dengan pendefinisian Model Spasial Tingkat Area, yaitu model dasar tingkat area dengan tambahan definisi model efek acak spasial pada . Model tersebut selanjutnya menjadi dasar untuk menaksir parameter rata-rata populasi dengan menggunakan Metode Empirical Bayes. Pada bagian akhir skripsi ini juga diberikan contoh penerapan metode Spatial Empirical Bayes untuk menaksir tingkat kemiskinan di Kota Depok pada tahun 2012. ...... In the application of statistics in society, sampling methods are conducted to obtain information about the populations that become a focus of observation. However, due to limitations in carrying out of sampling methods, the number of samples is often not sufficient to obtain precise estimates for the population. Therefore, several alternative methods are developed for estimating the parameters with a small number of sample areas which has covered in the topics Small Area Estimation. This paper is described about how to find a point estimation of population mean on small area with Empirical Bayes method based on area level model. In general, this method starts with defining the Spatial Area Level Model, which is the basic area level model with an additional definition of spatial random effects model for . That model then becomes basis for estimate parameter of population mean using Empirical Bayes methods. At the end, this paper also give an example of the application of Spatial Empirical Bayes methods for estimating poverty in Depok in 2012.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S56956
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eugene Clarance
Abstrak :
Diabetes melitus tipe 2 (DMT2) merupakan salah satu tipe diabetes yang telah menjadi permasalahan besar dalam dunia kesehatan. Salah satu pengobatan DMT2 yang mendegrasi enzim glukagon dan meningkatkan sekresi insulin adalah inhibitor Dipeptidil Peptidase-IV (DPP-IV).  Inhibitor DPP-IV yang sudah digunakan memiliki efek samping yang bahaya, seperti pankreatitis akut, arthalagia, dan gagal jantung. Pada penelitian ini, dilakukan pengembangan model Virtual Screening (VS) menggunakan teknologi Artificial Intelligence (AI) untuk identifikasi inhibitor DPP-IV yang berpotensi. Pengembangan model VS dilakukan menggunakan konsep machine learning (ML) dan deep learning (DL). Pada penelitian ini, dilakukan 18 pengembangan model ML dan 8 model DL. Model VS DPP-IV yang optimal merupakan DNN dengan fitur Fingerprint dengan nilai parameter statistik lebih tinggi dari threshold VS optimal yaitu 0,85, dengan akurasi 0,91554, presisi 0,90815, sensitivitas 0,92319, selektivitas 0,90801, dan nilai F1 0,9156. Hyperparameter optimal model VS adalah tiga layer dengan jumlah neuron 2.000, 1.000, 100; nilai dropout 0; ukuran batch size 256; jumlah epoch 100; kecepatan learning rate 0,0001; dan tipe activation function merupakan RELU. Model VS DPP-IV dilakukan ujicoba terhadap database bindingDB dan didapat 24 ligan potensi. Berdasarkan perbandingan nilai binding affinity 24 ligan potensi terhadap ligan inhibitor DPP-IV menggunakan penambatan molekular, didapat satu ligan potensi berinteraksi dengan situs aktif S2 dan tujuh ligan potensi berinteraksi dengan situs aktif S3. Ligan tersebut memiliki nilai binding affinity lebih rendah dari ligan inhibitor DPP-IV yang FDA-approved dan lebih rendah dari -8 kcal/mol. Hasil ini menunjukkan bahwa model VS DPP-IV menggunakan AI dapat menjadi metode virtual screening dalam identifikasi inhibitor DPP-IV yang baru.
Diabetes mellitus type 2 (DMT2) is one of diabetes type that has been causing problems in the health sector. One of the DMT2 medications that can degrade glucagon enzyme and increase insulin secretion is a Dipeptydil Peptidase-IV (DPP-IV) inhibitor. However, DPP-IV inhibitor drugs result in unexpected side effects such as acute pancreatitis, arthralgia, and heart failure. This research developed a virtual screening (VS) model using Artificial Intelligence (AI) to identify potential DPP-IV inhibitors. VS models that were developed were 18 ML models and 8 DL models. DNN with fingerprint features was the VS model best optimal with statistical parameters that exceeds the optimum VS threshold value, which is 0,85, with accuracy 0,91554, precision 0,90815, sensitivity 0,92319, selectivity 0,90801, and F1 score 0,9156. Optimum VS model hyperparameter used a three-layered neuron with the neuron amount of each layer were 2000, 1000, and 100; zero dropout, 256 batch size, 100 epochs, learning rate 0,0001 with RELU as activation function. DPP-IV VS model was used to predict potential ligands using bindingDB and showed 24 ligands with an AI confidence level above 0.98. Based on the binding affinity comparison with DPP-IV inhibitors by molecular docking, it resulted one ligand interacting with active site S2 and seven ligands interacting with active site S3. These ligands had lower binding affinity value compared to FDA-approved DPP-IV inhibitor by docking. The result of this research showed that the DPP-IV VS model using AI could be a new VS model in identifying new DPP-IV inhibitors.
Depok: Fakultas Farmasi Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ozananda Fachristiary Adji
Abstrak :
Tujuan penelitian ini adalah melakukan studi awal guna memprediksi nilai kerma udara dan half value layer (HVL) pesawat CT scan berdasarkan citra fantom homogen. Penelitian ini dilakukan dengan menggunakan citra homogen dari fantom standar CT scan yang dilakukan ekstraksi fitur GLCM (Gray Level Co-occurence Matrix), dengan data tambahan berupa nilai kVp pengambilan citra. Sebagai label output adalah hasil pengukuran kerma udara dan HVL. Model yang digunakan berbasis artificial neural network, dengan hyperparameter ditentukan berdasarkan teknik hyperparameter tuning dengan menggunakan Teknik Gridsearch. Pencarian hyperparameter berupa fungsi aktivasi, jumlah hidden layer, jumlah hidden unit, kernel initializer, dan optimizer dilakukan dengan Analisa performa hasil. Kualitas performa klasifikasi model artificial neural network menggunakan confusion matrix menunjukkan akurasi sebesar 84,4% pada model yang dilatih menggunakan input fitur GLCM, sedangkan pada model artificial neural network yang menggunakan input fitur GLCM dan kVp menunjukkan akurasi sebesar 100%. Hasil ini menunjukkan bahwa fitur GLCM mampu menghasilkan akurasi yang baik untuk melakukan prediksi kerma udara dan HVL. Namun, jika disertai dengan fitur kVp sebagai input, maka proses training akan menghasilkan akurasi yang sangat baik, dengan gejala dominasi fitur kVp terhadap fitur GLCM. ......The goals of this research is to do preliminary study to predict air kerma and half value layer (HVL) of CT scan base on phantom image which has homogeneous characteristic. This research starts with GLCM (Gray Level Co-occurence Matrix) feature extraction process from the phantom image, the kVp value also extracted from the phantom image dicom information. While the target during training is air kerma and HVL measurement resulted from the dosimeter and solid state device. Machine learning model used for this research is artificial neural network (ANN) base Machine Learning model. However, the hyperparameter have not yet been found. Thus, this problem could be solved by using Hyperparameter tuning technique, specifically using Gridsearch with variety of activation function, hidden layers, hidden units, kernel initializer, and optimizer as the parameter guideline. The performance of classification model is measured using confusion matrix technique. The classification performance show that the model which trained using GLCM feature only has 84.4% accuracy to predict air kerma and HVL. While, the classification performance show that the model which trained using GLCM feature and kVp that extracted from the dicom information has 100% accuracy to predict air kerma and HVL. Although, the model that train using GLCM feature and kVp can predict much better than the model which trained using GLCM feature only, it shows that GLCM feature is dominated by kVp feature that extracted from the dicom information.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>