Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Alifiyya Ummu Salma
Abstrak :
Siklopentanon merupakan senyawa yang dapat dikonversi menjadi siklopentana, untuk digunakan sebagai prekursor jet fuel, agar dapat mengurangi titik beku bahan bakar pesawat. Siklopentanon dapat dihasilkan dari reaksi katalitik hidrogenasi berbahan dasar furfural. Namun pengaplikasian reaksi hidrogenasi ini memiliki kekurangan karena tekanan hidrogen yang dibutuhkan sangat tinggi, hingga 80 bar, sehingga memerlukan biaya yang mahal. Karena keterbatasan tingkat kelarutan gas hidrogen dalam cairan, maka pada umumnya, untuk mendapatkan angka konversi dan yield produk yang tinggi, reaksi diberikan tekanan gas hidrogen yang setinggi mungkin. Namun, tingginya tekanan tersebut menjadi tidak efisien jika ditinjau dari segi ekonomi dan safety. Cara untuk mengurangi tekanan yang tinggi tersebut dapat dilakukan dengan melakukan reduksi parsial pada inti aktif katalis dan penggunaan self-inducing impeller. Penelitian ini dilakukan dengan tiga variasi rasio Ni-NiO dan dua variasi tekanan yang berbeda. Katalis Ni-NiO/ZrO2-Re450 dengan struktur heterojunction Ni-NiO (Ni 75,2% dan NiO 24,8%), dan tekanan reaksi 10 bar mampu menghasilkan konversi umpan furfural terbanyak (80,16%), yield siklopentanon terbanyak (58,82%), dan selektivitas siklopentanon tertinggi (73,38%). Hasil kuantitatif tersebut dikaitkan dengan tingkat solubilitas gas hidrogen pada fase liquid yang tinggi, luas permukaan katalis yang besar, komposisi logam nikel yang kecil, interaksi yang kuat antara ini aktif dan penyangga katalis, serta tingkat kebasaan katalis yang kecil. ......Cyclopentanone is a compound that can be converted into cyclopentane to be used as jet fuel precursor to reduce freezing point of aircraft fuel. Cyclopentanone produced from the catalytic reaction of furfural hydrogenation. Applying hydrogenation reaction has drawbacks because the high required hydrogen pressure, up to 80 bar. Due to the limited solubility of hydrogen gas in liquids, the reaction is given the highest pressure possible to obtain high conversion and product yields. However, the high pressure becomes inefficient from an economic and safety point of view. The high pressure can be reduced by converting partial reduction of the catalyst active core and using a self-inducing impeller. This research was conducted with three variations of the Ni-NiO ratio and two different pressure. The Ni-NiO/ZrO2-Re450 catalyst with a Ni-NiO heterojunction structure (75.2% NiO; 24.8% NiO), and a reaction pressure of 10 bar was able to produce the highest furfural conversion (80.16%), cyclopentanone yield (58.82%), and cyclopentanone selectivity (73.38%). These quantitative results are attributed to the high solubility of hydrogen gas in the liquid phase, the large catalyst surface area, the small composition of nickel metal, the strong interaction between active and catalyst support, and the low alkalinity of the catalyst.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabila Putri Syaharani
Abstrak :
Hidrogenasi selektif alkuna menjadi alkena adalah jenis penting dari transformasi organik dengan aplikasi industri skala besar. Transformasi ini membutuhkan katalis yang efisien dengan kontrol yang tepat. Katalis bimetalik seperti Ni digunakan secara luas dalam reaksi hidrogenasi alkuna karena sifatnya yang aktif dan selektif. Menemukan katalis yang ekonomis, aktif dan selektif untuk produksi alkena melalui hidrogenasi parsial alkuna merupakan sebuah tantangan bagi ilmu penelitian. Pada penelitian ini dilakukan hidogenasi selektif pada alkuna terminal menggunakan katalis Ni yang terenkapsulasi dengan fruktosa pada silika. Selain itu digunakan NaBH4 sebagai sumber hidrogen serta reduktor pada reaksi. Penelitian ini dimulai dengan mensintesis katalis Ni menggunakan Ni(acac)2 sebagai prekursor. Katalis Ni kemudian disintesis dengan teknik impregnasi menggunakan monosakarida untuk pembuatan nanopartikel nikel baru, yang merupakan katalis hidrogenasi selektif. Dilakukan imobilisasi fruktosa dan Ni(acac)2 pada silika dan menggunakan fruktosa sebagai sumber karbon yang mengenkapsulasi Ni dengan ukuran dan distribusi yang seragam. Proses impregnasi Ni disertakan fruktosa sebagai sumber karbon. Katalis Ni-fruktosa/SiO2 kemudian di karakterisasi menggunakan FT-IR, XRD, SEM-EDX, dan SAA untuk mengetahui keberhasilan sintesis. Katalis Ni-fruktosa/SiO2 kemudian digunakan untuk reaksi hidrogenasi alkuna terminal menggunakan substrat fenilasetilena dengan NaBH4. Produk yang dihasilkan dari reaksi hidrogenasi alkuna terminal akan dikarakterisasi menggunakan instrumentasi GC-MS untuk mengamati aktivitas katalis serta selektivitas produknya. Analisis campuran produk dengan GCMS menunjukkan bahwa katalis dengan variasi atom Ni:fruktosa sebesar 2:1 memberikan hasil paling baik dengan persen konversi alkuna sebesar 35,4% dengan persen selektivitas terbesar sebesar 61,7%. ......Selective hydrogenation of alkynes to alkenes is an important type of organic transformation with large-scale industrial applications. This transformation requires an efficient catalyst with precise control. Bimetallic catalysts such as Ni are widely used in the hydrogenation reactions of alkynes because of their active and selective nature. Finding an economical, active and selective one for alkene production through partial hydrogenation of alkynes is a challenge for science. In this study, selective hydrogenation of terminal alkynes will be carried out using a Ni catalyst which is encapsulated with fructose on silica. In addition, NaBH4 is used as a hydrogen source and reducing agent in the reaction. This research was started by synthesizing Ni catalyst using Ni(acac)2 as a precursor. The Ni catalyst was then synthesized by impregnation technique using monosaccharides for the manufacture of new nickel nanoparticles, which were selected hydrogenation catalysts. Immobilizing fructose and Ni(acac)2 on silica and using fructose as a carbon source that encapsulates Ni with uniform size and distribution. The Ni impregnation process included fructose as a carbon source. The Ni-fructose/SiO2 catalyst was then characterized using FT-IR, XRD, SEM-EDX, and SAA to determine the success of the synthesis. The Ni-fructose/SiO2 catalyst was then used for the terminal hydrogenation reaction of the alkyne using phenylacetylene as a substrate with NaBH4. The product resulting from the terminal alkyne hydrogenation reaction will be characterized using GC-MS instrumentation to observe the catalyst activity and product selectivity. Analysis of the product mixture with GCMS showed that the catalyst with atomic variation of Ni:fructose of 1:5 gave the best results with an alkyne conversion percentage of 35,4% with selectivity percentage 61,7%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library