Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13 dokumen yang sesuai dengan query
cover
Zulkarnain
Abstrak :
Kendala utama yang menghambat aplikasi bahan bakar fuel cell pada kendaraan bermotor saat ini adalah tabung penyimpan hidrogen (on board storage). Tabung penyimpan hidrogen berfungsi untuk menampung gas hidrogen, sama halnya seperti tangki bensin pada motor konvensional. Salah satu upaya mutakhir dalam riset penyimpan hidrogen adalah dengan menyisipkan hidrogen dalam logam tertentu atau disebut solid state hydrogen storage. Magnesium (Mg) dianggap sebagai salah satu kandidat potensial material penyerap hidrogen karena, secara teoritis, memiliki kemampuan menyerap hidrogen dalam jumlah besar (7,6 wt%). Jumlah ini melebihi batas minimum yang ditargetkan Badan Energi Dunia (IEA) yakni sebesar 5 wt%. Selain itu sifat Mg yang ringan, mudah diperoleh dan harganya yang ekonomis juga menjadi pertimbangan peneliti dunia saat ini. Akan tetapi Mg memiliki kekurangan, yakni reaksi kinetiknya sangat lambat. untuk menyerap hidrogen dibutuhkan waktu minimal 60 menit. Temperatur operasinya juga sangat tinggi (300 -SiC YANG DIPREPARASI MELALUI RUTE REACTIVE MECHANICAL ALLOYING oC). Dalam perkembangannya, penggunaan material berskala nano diikuti dengan penambahan elemen lain sebagai katalis melalui proses preparasi material (mis. mechanical alloying) kini sedang aktif dilakukan. Karena itu, dalam penelitian ini dipelajari sistem penyimpan hidrogen berbasis MgH2-SiC. Material utama yakni MgH2 dipadukan dengan menyisipkan katalis karbida SiC dan direaksikan dengan gas hidrogen bertekanan rendah (0-10 bar) selama proses miling. Tujuan dari studi ini adalah untuk memperbaiki sifat-sifat serapan (absorp dan desorp) material penyimpan hydrogen berbasis MgH2. Adapun preparasi material dikerjakan melalui rute reactive mechanical alloying. Pada metode ini, penghalusan (milling) material dilakukan dalam atmosfir reaktif H2 (10 bar). Selain itu pengaruh penggunaan katalis ganda (SiC dan Ni) skala nanopartikel juga turut dipelajari. Hasilnya, material dengan komposisi MgH2-5wt%SiC-5wt%Ni memiliki sifat-sifat lebih unggul. Dalam sistem ini hidrogen yang diserap mencapai 5,7 wt%. Hasil observasi dengan DTA diketahui temperatur desorpsinya dapat direduksi hingga 250°C. Hasil ini berhasil memperbaiki Tonset MgH2 murni yang mencapai 380°C.
Hydrogen can be stored in the form of gas, as a liquid, in solid materials (metals hydrides) with different advantages and drawbacks in terms of cost, weight, stability, convenience of usage and energy density. Hydrogen storage in metal hydrides, compared t°Conventional methods, is regarded as one of the best solutions due to the higher volumetric storage capacity and safety. Magnesium and magnesiumbased alloys are promising candidates for hydrogen storage because of their high discharge capacity and low specific gravity, they are naturally abundant and produce relatively low costs in fabrication and in the acquisition of raw materials. The hydrogen storage capacity of magnesium in the form of MgH2 amounts to 7.6 wt.%. Unfortunately, MgH2 has a high thermodynamic stability and therefore, relatively slow desorption kinetics, which are the major drawbacks for the application as a hydrogen storage material. Various techniques are developed to improve the sorption characteristics by accelerating the aforesaid processes. In this work we success to synthesis and investigate the catalytic effect of SiC and Ni (in nanostructure scale) on MgH2 using reactive mechanical alloying method in 10 bar H2. At first step, using SiC catalyst the sorption properties can be improved. The most promising step by using SiC and Ni (MgH2-5wt%SiC-5wt%Ni) which could absorp 5.7 wt% hydrogen and at the same time decrease the desorption temperature to 250°C. Compared to T onset of pure MgH2 -which desorp at 380°C- this results is very promising for MgH2-SiC system.
Depok: Universitas Indonesia, 2011
D1296
UI - Disertasi Open  Universitas Indonesia Library
cover
Muhammad Hanif Abdurrahman
Abstrak :
ABSTRAK

Hidrogen merupakan salah satu sumber energi masa depan karena bersifat ramah lingkungan. Namun dalam pengembangannya masih terdapat beberapa masalah dalam metode penyimpanannya. Pada beberapa penelitian, ditemukan bahwa material berbasis silikon merupakan salah satu kandidat yang baik sebagai media penyimpanan hidrogen. Pada penelitian ini, penulis ingin melihat pengaruh temperatur dan tekanan terhadap adsorpsi hidrogen pada silika amorf dengan menggunakan simulasi dinamika molekuler menggunakan potensial Lennard-Jones. Pada simulasi ini temperatur yang digunakan yaitu 233, 253, 273 dan 293 K serta tekanan pada setiap temperatur bervariasi yaitu 1, 2, 5, 10 dan 15 atm. Simulasi ini berhasil menggambarkan dan mengindikasikan bahwa silika amorf memiliki kemampuan untuk menyimpan hidrogen yang cukup baik dimana temperatur dan tekanan mempengaruhi jumlah hidrogen yang teradsorpsi. Pengaruh temperatur yaitu pada temperatur yang lebih rendah (233 K), maka jumlah konsentrasi hidrogen yang terserap pada silika amorf akan semakin besar. Sementara pada temperatur yang lebih tinggi maka hasilnya akan menurun. Hasil adsorpsi terbaik terjadi pada tekanan yang lebih tinggi (15 atm) pada temperatur rendah (233 K) dengan konsentrasi hidrogen sebesar 0,048116%.


ABSTRACT
Hydrogen is one of the future source energy because it has environmentally friendly. However, there are still some problems in the storage method of hydrogen. In several studies, it was found that Silicon based material is a promising candidate as a hydrogen storage medium. In this study, the effect of various temperature and pressure to the adsorption of hydrogen on amorphous silica with molecular dynamics simulation using Lennard-Jones potential. In this simulation, the temperature that i used are 233, 253, 273 and 293 K with pressure at each temperature are 1, 2, 5, 10, and 15 atm. The simulations had successfully visualize and indicate that amorphous silica has a good hydrogen storage capability where temperature and pressure affect the amount of hydrogen adsorbed.. At low temperature (233 K), the hydrogen concentration are relatively high than at higher temperature. The best result of hydrogen capacity is 0,048116% that occurred at high pressure (15 atm) with low temperature (233 K) condition.

2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zulkarnain Jalil
Abstrak :
Magnesium-based hydrogen storage alloy is one of the most attractive hydrogen storage materials for fuel cell-powered vehicle application. However, a high desorption temperature and slow kinetics limit its practical application. Extensive efforts are required to overcome these problems, one of which is inserting a metal oxide catalyst. In this work, we reported the current progress of using nano-silica (SiO2) as a catalyst to improve the thermodynamics and kinetics of magnesium hydride (MgH2). Nano-SiO2 was extracted from local rice husk ash (RHA) using the co-precipitation method. Then, the MgH2 was catalyzed with a small amount of nano-SiO2 (1 wt%, 3 wt%, and 5 wt%) and prepared using a high-energy milling technique. The microstructure and hydrogen desorption performance were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The results of the XRD test showed that the milling process over 5 h reduced the material to a nanometer scale. Then, SEM images showed that the powders were agglomerated after 5 h of milling. Furthermore, it was also found that nano-SiO2 reduced the hydrogen desorption temperature of MgH2 to 338°C in 14.75 min when the 5 wt% variation of the catalyst was applied.
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Zulkarnain Jalil
Abstrak :
Magnesium-based hydrogen storage alloy is one of the most attractive hydrogen storage materials for fuel cell-powered vehicle application. However, a high desorption temperature and slow kinetics limit its practical application. Extensive efforts are required to overcome these problems, one of which is inserting a metal oxide catalyst. In this work, we reported the current progress of using nano-silica (SiO2) as a catalyst to improve the thermodynamics and kinetics of magnesium hydride (MgH2). Nano-SiO2 was extracted from local rice husk ash (RHA) using the co-precipitation method. Then, the MgH2 was catalyzed with a small amount of nano-SiO2 (1 wt%, 3 wt%, and 5 wt%) and prepared using a high-energy milling technique. The microstructure and hydrogen desorption performance were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The results of the XRD test showed that the milling process over 5 h reduced the material to a nanometer scale. Then, SEM images showed that the powders were agglomerated after 5 h of milling. Furthermore, it was also found that nano-SiO2 reduced the hydrogen desorption temperature of MgH2 to 338°C in 14.75 min when the 5 wt% variation of the catalyst was applied.
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 7:8 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Suwarno
Abstrak :
Influences of fluorine containing compounds TiF4 and ZrF4 on hydrogen sorption properties of LiBH4 have been investigated. Thermovolumetric measurements, titration, and XRD technique were used to characterize the samples. The results demonstrated a pronounced beneficial effect of both ZrF4 and TiF4 on the sorption properties of modified LiBH4. After hydrogenation at 400°C and 80 bar, formation of modified LiBH4 was observed as a consequence of F dissolution in LiH (LiH1-zFz). Adding TiF4 and ZrF4 to LiBH4 has been found to modify both thermodynamic and kinetic properties.
Depok: Faculty of Engineering, Universitas Indonesia, 2011
UI-IJTECH 2:1 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
Bryan Afandy
Abstrak :
Kemajuan energi terbarukan akan mempengaruhi keseimbangan persediaan dan kebutuhan teknologi. Oleh karena itu, teknologi pendukung untuk infrastruktur energi sangat krusial untuk menjaga keseimbangan persediaan dan kebutuhan energi. Penyimpanan hidrogen bawah tanah pada ‘Lined Rock Cavern’ dapat menjadi solusinya dalam industry energi. Tesis ini meninjau teknologi yang telah diimplementasikan diluar negeri dan mengusulkan bagaimana teknologi tersebut dapat dibangun di Australia. Tesis ini membahas mengenai kematangan penyimpanan hidrogen bawah tanah yang telah dibangun di Swedia menunjukan adanya potensi untuk membangun fasilitas yang sama di Australia. Untuk lebih memahami mekanika bebatuan pada lokasi yang berpotensi di Australia, diperlukan proyek uji coba serupa degan ‘Grängesberg Pilot Plant’. Namun dengan adanya keterbatasan informasi, studi lebih lanjut mengenai analisa keuangan, dampak lingkungan, dan kondisi geologi diperlukan untuk kesuksesan proyek tersebut. ......The current rise of renewable energy will influence the energy balance between supply and demand. Therefore, supporting technology in energy infrastructure is crucial to maintain the supply and demand balance. Underground hydrogen storage using lined rock cavern might be game changing in the energy industry. This paper reviews technologies that have been done overseas and proposes what can be done to construct an underground hydrogen storage using purpose-build lined rock cavern in Australia. This paper shows the maturity of an underground hydrogen storage built in Sweden and indicates the viability of potential of similar facility built in Australia. It is proposed that a pilot project similar with Grängesberg Pilot Plant is built and simulated to better understand the rock mechanics for potential sites located in Australia determined the viability of the project. However due to lack of information, further research including cost benefit, environmental impact and geological assessment is needed to run the facility successfully.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rafi Athallah Seniang
Abstrak :
Hidrogen berpotensi besar sebagai energi masa depan, namun untuk metode penyimpanannya yang efektif masih menjadi tantangan. Penyimpanan bentuk gas membutuhkan vessel yang tahan tekanan setinggi 350 bar dan bentuk cair memerlukan suhu dibawah –239,95°C, sehingga butuh insulasi yang sulit. Pada November 2022, tim peneliti dari Jerman, Henrik dkk., mengembangkan metode penyimpanan dan pelepasan hidrogen dengan menggunakan reaksi kesetimbangan bikarbonat-format yang dibantu oleh katalis (4-Me)Triaz(NHPiPr2)2Mn(CO)2Br. Katalis tersebut berbasis mangan yang merupakan logam paling berlimpah kedua di bumi, tidak beracun, dan ramah lingkungan. Dalam penelitian ini kami mengusulkan tiga mekanisme reaksi yang memungkinkan untuk sistem penyimpanan dan pelepasan hidrogen ini bekerja. Kami menggunakan teori fungsional kerapatan (density functional theory, DFT) untuk memahami reaksi ini pada tingkat molekuler. Barrier single point energy paling rendah didapat pada mekanisme III, yaitu mekanisme yang dimana tahapan penentu laju reaksinya adalah pelepasan ion format dari katalis Mn bermuatan netral dengan nilai sebesar 24,9 kkal/mol dihitung pada tingkatan teori B3LYP-D3 def2-TZVP/SMD(THF). Selain itu, ditemukan bahwa penggunaan campuran air dan THF sebagai pelarut memberikan hasil yang lebih baik lagi. Tahapan penentu laju dari mekanisme ini ialah tahap pelepasan ion format dari pusat logam katalis dengan perubahan energi bebas Gibbs sebesar 8,9 kkal/mol. Semua perhitungan dilakukan dengan menggunakan perangkat lunak ORCA 5.0.3, Chemcraft dan Avogadro. ......Hydrogen has great potential as a future energy, but effective storage methods still pose a challenge. Gas storage requires a vessel that can withstand pressures as high as 350 bar and liquid form requires temperatures below –239.95°C, necessitating difficult insulation. In November 2022, a team of researchers from Germany, Henrik et al., developed a storage and release method for hydrogen using the bicarbonate-formate equilibrium reaction assisted by the catalyst (4-Me)Triaz(NHPiPr2)2Mn(CO)2Br. This catalyst is based on manganese, the second most abundant metal on Earth, which is non-toxic and environmentally friendly. In this study, we propose three reaction mechanisms that allow this hydrogen storage and release system to function. We employ density functional theory (DFT) to understand these reactions at the molecular level. The mechanism with the lowest single-point energy barrier is found in mechanism III, where the rate-determining step is the release of the formate ion from the neutral-charged Mn catalyst, with a value of 24.9 kcal/mol calculated at the B3LYP-D3 def2-TZVP/SMD(THF) level of theory. Furthermore, it is found that using a mixture of water and THF as a solvent yields even better results. The rate-determining step of this mechanism is the release of the formate ion from the central metal catalyst, with a change in Gibbs free energy of 8.9 kcal/mol. All calculations were performed using the software packages ORCA 5.0.3, Chemcraft, and Avogadro.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferriansyah Hasan
Abstrak :
Salah satu cara yang sangat menjanjikan dalam teknologi penyimpanan gas adalah metoda-adsorptive storage - , dimana gas tersebut disimpan dalam keadaan teradsorpsi pada suatu-adsorben - tertentu. Nanotube carbon (NTC) merupakan jenis adsorben sintesis yang memiliki kapasitas adsorpsi hidrogen sehingga dapat menjadi alternatif yang menjanjikan sebagai storage hidrogen. Penelitian ini mengembangkan storage hidrogen, yang terdiri dari beberapa tahap yaitu persiapan storage hidrogen, preparasi adsorben dan alat adsorpsi, pengukuran helium void volume, uji adsorpsi dan desorpsi hidrogen pada tekanan tinggi, serta permodelan sederhana adsorpsi Langmuir. Adsorben yang digunakan adalah NTC komersial dan lokal dalam bentuk curah dan compacted yang dilakukan pada kondisi isotermal yaitu 25_C. Uji adsorpsi tekanan tinggi dilakukan untuk setiap kondisi nanotube karbon (curah dan compacted) sampai diperoleh kurva adsorpsi isotermal dengan kenaikan tekanan 1 Mpa sampai 6 Mpa. Hasil yang ditunjukkan oleh uji adsorpsi gas hidrogen tekanan tinggi pada kondisi isotermal (25_C), yaitu adsorpsi hidrogen dengan menggunakan variasi tiga adsorben akan meningkat kapasitas adsorpsinya seiring dengan meningkatnya tekanan. NTC lokal curah mempunyai kapasitas adsorpsi yang lebih rendah dibandingkan dengan kapasitas adsorpsi NTC komersial. Pada tekanan 600 psia, kapasitas adsorpsi NTC lokal sekitar 0,38 %, sedangkan NTC komersil curah pada tekanan yang sama daya adsorpsinya sekitar 0,6 %. Secara umum, data adsorpsi hidrogen dengan menggunakan variasi tiga adsorben dapat direpresentasikan dengan baik oleh permodelan Langmuir, dengan % deviasi NTC lokal curah sebesar 5- 6 %, dan % deviasi pada NTC komersial curah sebesar 0,004- 5. Sedangkan untuk % deviasi NTC komersial compacted sekitar 9- 13 %. ......One of the most promising way in the gas storage technology is a method of "adsorptive storage", where the gas is stored in an "adsorbent". Carbon nanotubes (NTC) is a type of synthesis adsorbent which has hydrogen adsorption capacity, so that would be a promising alternative for hydrogen storage. This research consists of several stages; preparation of hydrogen storage, preparation adsorbent and adsorption equipment, measurement of Helium void volume, and also hydrogen adsorption and desorption at high pressure, as well as simple modeling Langmuir adsorption. This research using a commercial and local NTC in bulk and compacted form, which treated in an isothermal conditions of 25_C. High pressure adsorption analysis is performed for each condition of carbon nanotubes (bulk and compacted) to obtain the isothermal adsorption curve with increasing of pressure from 1 to 6 Mpa. The results shown by high pressure adsorption of hydrogen gas at isothermal conditions (25_C) is the adsorption of hydrogen by using variations of three adsorbent, will increase the adsorption capacity with the increase of pressure. Local NTC bulk adsorption capacity is lower than the adsorption capacity of commercial NTC. At pressure of 600 psia, local NTC adsorption capacity is around 0.38%, while the bulk of commercial NTC at the same pressure is around 0.6%. In general, the hydrogen adsorption data using variations of three adsorbent could be well represented by Langmuir models, the deviation of the local NTC is about 5 to 6%, the deviation in the bulk of commercial NTC is about 0.004 to 5%, and the deviation of NTC commercial compacted is about 9 to 13%."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51824
UI - Skripsi Open  Universitas Indonesia Library
cover
Daniel
Abstrak :
Hidrogen adalah salah satu energi terbarukan yang menjanjikan dan berpotensi menjadi pengganti bahan bakar fosil.Namun, aplikasi hidrogen sebagai bahan bakar memiliki kekurangan, yaitu dalam hal penyimpanannya. Dalam suhu kamar dan tekanan atmosfir, hidrogen memiliki rasio energi yang sangat rendah terhadap volumenya jika disimpan dalam bentuk gas sehingga perlu dilakukan berbagai penelitian yang berkaitan dengan metode dan material untuk menyimpan hidrogen terus dilakukan. Sejauh ini metode penyimpanan hidrogen memakai prinsip adsorpsi dengan karbon aktif berbentuk granular sebagai adsorben sangat menjanjikan karena bisa menurunkan tekanan dalam tangki dengan kapasitas penyimpanan yang relatif sama. Pada penelitian ini, karbon aktif yang digunakan pada penelitian ini adalah karbon aktif berbahan dasar batu bara. Proses pengambilan data dilakukan dengan metode volumetrik dan tipe adsorpsi yang digunakan adalah adsorpsi isotermal. Penyerapan dilakukan pada 3 temperatur berbeda, pertama pada temperatur 35°C dan tekanan mencapai 40 bar, yang kedua adalah pada temperatur 25°C dan tekanan mencapai 40 bar dan ketiga adalah pada temperatur 0°C dan tekanan mencapai 40 bar. Pada temperatur 35°C, penyerapan hidrogen sebesar 0.00228995 kg/kg pada tekanan 3935.22 kPa. Pada temperatur 25°C, penyerapan hidrogen sebesar 0.00249057 kg/kg pada tekanan 3939.24 kPa Pada temperatur 0°C, penyerapan hidrogen sebesar 0.00267156kg/kg pada tekanan 3939.24 kPa. Data yang didapat selanjutnya dikorelasi dengan menggunakan persamaan model Langmuir, Toth, dan Langmuir-Freudlich. ......Hydrogen is one of promising and potential new energy sources as the substitute of fossil fuel.But, the application of hydrogen as fuel still has weakness in a storage system. Inroom temperature and atmosphere pressure, hydrogen has a very low energy/volume ratio if the hydrogen is stored in gas phase, so it's needed to do some research about the method and materials to adsorp hydrogen. Nowadays, hydrogen adsorption?s method using granular activated carbon as the adsorbent is very promising since can reduce the pressure in cell with the adsorption capacity relatively same as other methods. In this research, the activated carbon which used is coal based. The method which used in this research is volumetric method and the type of adsorption in this research is isothermal adsorption. The adsorptions in this research are in 3 temperature, first adsorption in 35°C and the pressure up to 40 bars and second adsorption in 25°C and the pressure up to 40 bars and third adsorption in 0°C and the pressure up to 40 bars. At temperature 35°C, the hydrogen adsorption is 0.00228995 kg/kg at 3935.22 kPa. At temperature 25°C, the hydrogen adsorption is 0.00249057 kg/kg at 3939.24 kPa At temperature 0oC, the hydrogen adsorption is 0.00267156 kg/kg at 3939.24 kPa.The Data are corelated with some model equations Langmuir, Toth, and Langmuir-Freudlich.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42272
UI - Skripsi Open  Universitas Indonesia Library
cover
Rahman Hadi
Abstrak :
Gas Hidrogen memiliki manfaat sebagai bahan bakar yang bermanfaat untuk sumber energi masa depan karena menurunkan ketergantungan akan minyak bumi dan pengurangan polusi udara. Penyimpanan hidrogen adalah masalah utama yang harus ditaklukkan untuk keberhasilan implementasi teknologi sel bahan bakar dalam aplikasi transportasi dan ini merupakan tantangan ilmu material utama. Salah satu solusi untuk mengatasi permasalahan tersebut adalah dengan menggunakan metode adsorpsi. Material reduced Graphene Oxide (rGO) merupakan salah satu material yang berpotensial untuk digunakan sebagai media penyimpanan gas hidrogen. Pada penelitian ini, penulis ingin melihat pengaruh temperatur dan tekanan terhadap adsorpsi hidrogen pada reduced Graphene Oxide (rGO) dengan menggunakan simulasi dinamika molekuler menggunakan potensial Lennard-Jones.Pada riset ini, penulis menggunakan metode Simulasi Dinamika Molekuler. Variasi temperatur yang digunakan pada simulasi ini adalah 77, 100, 150, 200, 273, dan 298 K dengan variasi tekanan pada tiap temperatur adalah 1, 2, 5, 10, 15, 20, 40, 80. dan 100 bar. Hasil simulasi kemudian dibandingkan dengan hasil riset secara eksperimental yang telah dilakukan oleh peneliti lainnya. Pada temperatur tinggi, hasil simulasi mendekati hasil riset secara eksperimental. Namun pada temperatur rendah, hasil simulasi memiliki perbedaan secara signifikan dari riset secara eksperimental.
Hydrogen gas has benefits as a useful fuel for future energy sources because it reduces dependence on petroleum and reduces air pollution. Hydrogen storage is a major problem that must be conquered for the successful implementation of fuel cell technology in transportation applications and this is a major material science challenge. One solution to overcome these problems is to use the adsorption method. Reduced Graphene Oxide (rGO) material is a material that has the potential to be used as a storage medium for hydrogen gas. In this study, the authors wanted to see the effect of temperature and pressure on hydrogen adsorption on reduced Graphene Oxide (rGO) using molecular dynamics simulations using Lennard-Jones potential. In this research, the authors used the Molecular Dynamics Simulation method. Temperature variations used in this simulation are 77, 100, 150, 200, 273, and 298 K with variations in pressure at each temperature are 1, 2, 5, 10, 15, 20, 40, 80. and 100 bar. The simulation results are then compared with the results of experimental research conducted by other researchers. At high temperatures, the simulation results approach experimental research results. However, at low temperatures, the simulation results have a significant difference from experimental research.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>