Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Luthfi Azra Aulia
Abstrak :
Kualitas hidup adalah suatu payung yang melingkupi variasi konsep fungsional, status kesehatan, persepsi, kondisi kehidupan, gaya hidup, dan kebahagiaan. Indikator dalam mengukur kualitas hidup terbagi menjadi dua, yakni indikator subjektif dan indikator objektif. Indikator subjektif berkaitan langsung dengan berbagai pengalaman yang seseorang alami dalam hidupnya. Di sisi lain, indikator objektif dikaitkan dengan wujud kepemilikan berbagai material atau faktor eksternal yang mempengaruhi berbagai pengalaman seseorang dalam menjalani kehidupannya. Pada penelitian ini, indikator objektif dipilih sebagai alat ukur kualitas hidup yang mencakup karakteristik sosial, ekonomi, kesehatan, dan lingkungan. Data yang digunakan dalam penelitian terdiri dari dua jenis data, yakni data numerik dan kategorik. Data yang digunakan merupakan data sekunder berisikan indikator objektif kualitas hidup di 82 negara pada tahun 2020. Adapun metode yang digunakan adalah algoritma K-prototypes dan Two Step Cluster (TSC) yang merupakan bagian dari metode pengelompokan nonhierarki dan hierarki serta dapat menangani data bertipe campuran (numerik dan kategorik). Hasil dari penelitian ini menunjukkan bahwa algoritma K-prototypes merupakan metode yang memberikan hasil lebih baik dalam mengelompokkan data penelitian dibandingkan algoritma TSC dengan nilai koefisien Silhouette sebesar 0,577, yang bermakna bahwa kelompok yang terbentuk telah memiliki struktur yang baik. Kelompok optimal yang terbentuk adalah sebanyak 2 kelompok yang disusun oleh 40 negara pada Kelompok 1 dan 42 negara pada Kelompok 2. Kelompok 2 cenderung memiliki profil kualitas hidup yang lebih baik dibandingkan Kelompok 1. ......Quality of life is a phrase that covers a variety of functional concepts, health status, perception, living conditions, lifestyle, and happiness. Indicators in measuring quality of life are divided into two, namely subjective indicators and objective indicators. Subjective indicators are measured based on various experiences that people went through in life. On the other hand, objective indicators are measured based on various materials or external factors that affect a person's experiences in everyday life. In this study, objective indicators were chosen as quality measurement tools based on social, economic, health, and environmental characteristics. The data used in the study consisted of two types of data, namely numerical and categorical data. The data is secondary data containing objective indicators of quality of life in 82 countries in 2020. The method used in this research is the K-prototypes and Two Step Cluster (TSC) algorithm which is part of the non-hierarchical and hierarchical grouping method and can handle mixed-type data. The results of this study indicate that the K-prototypes algorithm is a method that gives better results than the TSC algorithm with a silhouette coefficient value of 0.577, which means that the formed group already has a good structure. The optimal groups formed are 2 groups composed of 40 countries in Group 1 and 42 countries in Group 2. Group 2 tends to have a better quality of life profile than Group 1.
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anggun Nurseptiani
Abstrak :
Demi meningkatkan okupansi atau dengan kata lain mengoptimumkan penggunaan kapasitas kendaraan pribadi, ridesharing hadir sebagai solusi akan hal ini. Ridesharing adalah sebuah model berkendara dengan prinsip berbagi tumpangan. Permasalahannya adalah bagaimana cara mengoptimumkan pencocokan antara pengemudi (driver) dan penumpang (rider) dengan jumlah partisipan (driver dan rider) yang besar dalam waktu optimasi yang singkat. Pada skripsi ini akan diterapkan metode Agglomerative Hierarchical Clustering (AHC) untuk mengoptimalkan matching antara driver dan rider dengan fungsi objektif yaitu memaksimumkan total penghematan jarak (Distance Savings / DS). DS adalah selisih total jarak yang ditempuh driver dan rider tanpa ridesharing dengan jarak yang ditempuh pasangan tersebut dengan ridesharing. Metode AHC adalah metode clustering dimana setiap titik data dijadikan sebagai satu cluster, kemudian secara berturut-turut menggabungkan cluster yang mempunyai kemiripan sehingga semua cluster tergabung menjadi satu cluster yang berisikan semua objek pada data. Data yang di-input berupa data koordinat lokasi keberangkatan dan kedatangan partisipan. Output dari metode AHC adalah sebuah dendogram yang menggambarkan iterasi pembentukan cluster. Berdasarkan hasil clustering tersebut diperoleh sebuah himpunan kombinasi driver-rider yang kemudian akan diperiksa kelayakannya untuk melakukan ridesharing. Dari himpunan kombinasi yang layak untuk melakukan ridesharing akan dipilih pasangan yang paling optimum untuk melakukan ridesharing dengan menggunakan algoritma Hungarian sehingga menghasilkan total distance savings maksimum. Berdasarkan hasil simulasi program pada data percobaan, diperoleh maksimum total DS sebesar 244.78 kilometer yang dihasilkan dari 13 kombinasi driver-rider. Penggunaan clustering mampu mereduksi 257 dari 400 kombinasi driver-rider yang akan diuji kelayakannya untuk melakukan ridesharing. ......To increase the occupancy rate, ridesharing is an alternative solution. Ridesharing is a mode of transportation in which individual travelers share a vehicle for a trip. The problem is how to optimize the matching problem of drivers and riders with a large number of participants in a short optimization time. This thesis purposed Agglomerative Hierarchical Clustering (AHC) method to be applied in optimizing the matching between drivers and riders with an objective function maximizing the total distance savings (DS). DS is obtained from the difference in the total distance of individual trip with the distance of ridesharing trip. AHC method is a clustering method which each data point is made as one cluster, then successively combines clusters that have similarities until all clusters are merged into one cluster which containing all data points. The input data are the coordinates of the participants' departure and arrival location. The output of AHC is dendogram that illustrates the iteration of cluster formation. Based on clustering results, a set of driver-rider combination was obtained which were then examined for their eligibility to do ridesharing. Next, from the set of driver-rider combination which feasible to do ridesharing, we will determine driver-rider combination that generates maximum total DS by using Hungarian Algorithm. Based on simulation program results on experimental data, maximum total DS is 244.78 kilometers that was obtained from 13 driver-rider combinations. The use of clustering was able to reduce 257 out of 400 pair combinations that were tested for their feasibility to do ridesharing.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christina Deni Rumiarti
Abstrak :
Kemajuan teknologi informasi menghasilkan berbagai pilihan dalam mengakses informasi termasuk membaca buku. Peningkatan jumlah pembaca yang beralih ke buku elektronik mengakibatkan angka penjualan buku cetak mengalami penurunan meskipun tidak signifikan pada beberapa tahun terakhir. PT Gramedia Asri Media merupakan salah satu perusahaan ritel buku di Indonesia. Gramedia menerapkan CRM dengan menerbitkan kartu member Kompas Gramedia Value Card KGVC . Promosi ataupun penawaran yang diberikan belum mampu meningkatkan transaksi buku member KGVC. Penelitian ini bertujuan untuk membuat segmentasi pelanggan pada Customer Relationship Management di PT Gramedia Asri Media. Proses data mining dilakukan dengan melakukan clustering menggunakan algoritma K-means untuk segmentasi pelanggan berdasarkan RFM, serta algoritma hierarchical clustering untuk segmentasi pelanggan berdasarkan banyaknya jenis buku. Evaluasi terhadap hasil cluster menggunakan elbow method, silhouette method, dan Calinski-Harabasz index. Segmentasi pelanggan berdasarkan RFM menghasilkan 2 cluster yang optimal, yaitu occasional customers dan dormant customers. Sementara itu, segmentasi pelanggan berdasarkan banyaknya jenis buku yang dibeli menghasilkan 3 cluster yang optimal, yaitu rendah, sedang, dan tinggi. Dengan hasil penelitian ini, diharapkan dapat membantu perusahaan dalam mengelompokkan pelanggan untuk menentukan strategi yang sesuai sehingga dapat meningkatkan jumlah transaksi buku member KGVC.
Advances in information technology produces wide range of choices in accessing information including reading books. The increase in the number of readers who turning to electronic books making sales of printed books has decreased although not significant in the recent years. PT Gramedia Asri Media is one of book retail company in Indonesia. Gramedia implement CRM by launching a member card named Kompas Gramedia Value Card KGVC . Promotion or offer given has not been able to increase book transaction of KGVC members. This research focus on make customer segmentation in Customer Relationship Management at PT Gramedia Asri Media.Data mining process is done by clustering using K means algorithm for segmenting customers based on RFM, as well as hierarchical clustering algorithms for segmentation of customers based on the number of books type. Evaluation is done on cluster result using elbow method, silhouette method, and Calinski Harabasz index. Customer segmentation based on the RFM produce two optimal clusters, occasional customers and dormant customers. While customer segmentation based on the number of types of books purchased produce 3 optimal cluster, namely low, medium, and high. With these results, it is expected to help the company in classifying customers to determine the appropriate strategies, so company can increase the number of books transactions from KGVC members.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2017
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Elisabeth Martha Koeanan
Abstrak :
Image clustering adalah pengelompokan citra berdasarkan kesamaan ciri tententu pada sekumpulan citra. Image clustering yang dilakukan berdasarkan konten citra dapat menggunakan komponen warna, tekstur, garis tepi, bentuk, dan lainnya, atau berupa gabungan dari beberapa komponen. Pada penelitian ini dilakukan image clustering berdasarkan komponen warna. Tiga hal yang diperhatikan dalam proses clustering ini adalah penggunaan ruang warna, representasi citra, dan metode clustering. Ruang warna yang digunakan dalam penelitian ini adalah RGB, HSV, dan L*a*b*. Representasi citra atau feature extraction menggunakan histogram dan Gaussian Mixture Model, sedangkan metode clustering yang digunakan adalah K-Means dan Agglomerative Hierarchical. Pada ruang warna RGB dan L*a*b*, kinerja clustering terbaik berhasil dilakukan dengan menggunakan representasi citra GMM, sedangkan pada ruang warna HSV, citra yang berhasil dikelompokan dengan kinerja paling baik menggunakan representasi citra histogram. Kemudian, metode K-Means clustering bekerja lebih baik daripada Agglomerative Hierarchical pada image clustering yang menggunakan komposisi warna.
Image clustering is a process of grouping the image based on their similarity. Image clustering based on image content usually uses the color component, texture, edge, shape, or mixture of two components, etc. This research focuses in image clustering uses color component. Three main concepts concerned on this research are color space, image representation (feature extraction), and clustering method. RGB, HSV, and L*a*b* are used in color spaces. The image representations use Histogram and Gaussian Mixture Model (GMM), whereas the clustering methods are K-Means and Agglomerative Hierarchical Clustering. The result of the experiment show that GMM representation is better used for RGB and L*a*b* color space, whereas Histogram is better used for HSV. The experiment also show that K-Means better than Agglomerative Hierarchical for clustering method.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library