Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Vina Dwi Maharani
Abstrak :
Pemodelan data survival bergantung pada bentuk dari fungsi hazard-nya. Fungsi hazard dapat berbentuk monoton (monoton naik dan monoton turun) dan non-monoton (bathtub dan upside-down bathtub atau unimodal). Pada penelitian ini, diperkenalkan sebuah distribusi yang disebut distribusi extended inverse Lindley. Distribusi extended inverse Lindley merupakan distribusi yang dibangun dengan menggunakan transformasi terhadap distribusi Lindley dua paramater. Transformasi yang digunakan adalah transformasi power serta transformasi inverse agar distribusi yang dihasilkan mampu memodelkan data yang bersifat heavy tailed dan fungsi hazard-nya berbentuk upside-down bathtub. Pada penulisan ini, dibahas pembentukan distribusi extended inverse Lindley serta karakteristik dari distribusi tersebut yang meliputi fungsi distribusi, fungsi kepadatan peluang, fungsi survival, fungsi hazard, momen ke-r, skewness, kurtosis, modus dan median. Parameter dari distribusi extended inverse Lindley ditaksir menggunakan metode maximum likelihood. Pada akhir penelitian, dilakukan penerapan distribusi extended inverse Lindley terhadap data riil yaitu data survival lamanya waktu perbaikan untuk kerusakan penerima sinyal dan dibandingkan dengan distribusi lain yang mampu memodelkan data tersebut, dimana hasil dari perbandingan menunjukkan bahwa distribusi extended inverse Lindley mampu memodelkan data tersebut lebih baik dibanding dengan distribusi lain yang digunakan.
Modeling survival data depends on the shape of the hazard rate. Hazard rate may belong to the monotone (non-increasing and non-decreasing) and non-monotone (bathtub and upside-down bathtub). In this paper, a distribution called the extended inverse Lindley distribution will be introduced. Extended inverse Lindley distribution is a distribution that is formed from the transformation of the two parameter Lindley distribution. The transformations used are power transformation and inverse transformation. So that, the extended inverse Lindley distribution can model heavy tailed data with a upside-down bathtub hazard rate. In this essay, we will discuss how to construct extended inverse Lindley distribution and characteristics of these distributions. These include density function, probability distribusi function, survival function, hazard rate, r-th moment, skewness, kurtosis, mode dan median. Parameter estimation of the extended inverse Lindley distribution is using the maximum likelihood method. At the end of this paper, the application of the extended inverse Lindley distribution to real data in the form of survival data is the length of time to repair the damaged signal receiver and is compared with other distributions that are able to model the data, where the results of the comparison show that the application of the extended inverse Lindley distribution is better than the other distribution to model the data.
Depok: Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Joyce Eliza Tiurmauli
Abstrak :
Pada penelitian ini akan dijelaskan sebuah distribusi yang bernama distribusi Beta Pareto. Distribusi tersebut merupakan distribusi yang dibangun oleh distribusi Beta-Generated dengan mengkombinasikan distribusi Beta dan distribusi Pareto. Selain proses pembentukan distribusi Beta Pareto, karakteristik distribusi Beta Pareto yang meliputi fungsi kepadatan peluang, fungsi ditribusi, momen ke-r, momen sentral ke-r, mean, variansi, perilaku limit, serta karakteristik lainnya dari distribusi Beta Pareto juga akan dibahas pada penelitian ini. Distribusi Beta Pareto sendiri memiliki kelebihan pada fungsi kepadatan probabilitas nya yang berbentuk monoton turun dan unimodal. Selain itu, distribusi ini juga dapat memodelkan data yang heavy-tailed. Untuk penaksiran parameter dari distribusi Beta Pareto akan digunakan metode Maximum Likelihood Estimation dan hasil akhirnya akan diperoleh dengan metode numerik. Sebagai ilustrasi, akan digunakan data severitas klaim dari asuransi kendaraan bermotor yang akan dimodelkan dengan distribusi Beta Pareto. Akan ditunjukkan dengan perbandingan nilai AIC dan BIC bahwa distribusi Beta Pareto mampu memodelkan data severitas klaim dari asuransi kendaraan bermotor lebih baik dari distribusi Pareto. ......In this study, a distribution called the Beta Pareto distribution will be introduced. This distribution is a distribution builtby the Beta-Generated distribution by combining the Beta distribution and the Pareto distribution. In addition, beside the process of forming the Beta Pareto distribution, the characteristics of the Beta Pareto distribution which include theprobability density function, distribution function, rth moment, rth central moment, mean, variance, behavior limit, and other characteristics of the Beta Pareto distribution will also be explained in this research. The Beta Pareto distribution itself has the advantage of its probability density function which not only have decreasing shape but also unimodal. In addition, this distribution can also model heavy-tailed data. The Maximum Likelihood Estimation method will be used to estimate the parameters of the Beta Pareto distribution and the final result will be obtained by a numerical method. As an illustration, the severity of motor vehicle insurance claims data will be used and will be modeled by the Beta Pareto distribution. It will be shown by a comparison of AIC and BIC values that the Beta Pareto distribution is able to model the the severity of motor vehicle insurance claims data better than the Pareto distribution.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nathanael Desephviasco Tanlie
Abstrak :
Pada penelitian ini, diperkenalkan sebuah distribusi yang disebut distribusi Pareto Positive Stable. Distribusi tersebut merupakan distribusi yang dibangun dengan menggunakan transformasi Laplace dari shape parameter pada distribusi Pareto. Selain itu, distribusi Pareto Positive Stable juga didapat dari tranformasi terhadap distrbusi Weibull. Transformasi yang digunakan adalah transformasi exponentiation serta transformasi multiplication by constant. Distribusi Pareto Positve Stable memiliki kelebihan yaitu bentuk fungsi kepadatan peluang berbentuk monoton turun maupun berbentuk unimodal. Selain itu, distribusi Pareto Positive Stable dapat memodelkan data severitas klaim dengan karakteristik data heavy tailed. Berdasarkan penaksiran paramater dengan menggunakan penaksiran maximum likelihood pada data klaim asuransi kendaraan bermotor, kemudian dilakukan perbandingan menggunakan distribusi Lognormal dengan menggunakan AIC dan BIC, didapat bahwa distribusi Pareto Positive Stable lebih baik dalam memodelkan severitas klaim asuransi kendaraan bermotor. ......In this study, it introduced a distribution called the Pareto Positive Stable distribution. The distribution is a distribution that is built using the Laplace transform of the shape parameter in the Pareto distribution. In addition, the Pareto Positive Stable distribution is also obtained from the transformation of the Weibull distribution. The transformations used are exponential transformation and multiplication by constant transformation. The Pareto Positive Stable distribution has the advantage of having the form of a probability density function in the form of a decreasing monotone or a unimodal form. In addition, the Pareto Positive Stable distribution can model claim severity data with heavy tail data characteristics. Based on the parameter estimation using maximum likelihood estimation for motor vehicle insurance claims data, then doing comparison using the distribution with the Lognormal distribution using AIC and BIC, it is found that the Pareto Positive Stable distribution is better in modeling the severity of motor vehicle insurance claims.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library