Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Fitria Rahmawati
Abstrak :
Data lifetime biasanya digunakan peneliti untuk mengetahui tingkat survival atau tingkat kegagalan suatu objek. Distribusi Weibull merupakan distribusi probabilitas yang sering digunakan untuk memodelkan data lifetime. Namun, distribusi Weibull hanya dapat memodelkan data lifetime dengan tingkat kegagalan atau hazard rate yang monoton. Sehingga dibutuhkan distribusi baru yang dapat memodelkan data lifetime dengan karakteristik tingkat kegagalan atau hazard rate yang beragam. Distribusi inverse Weibull adalah distribusi hasil transformasi inverse dari distribusi Weibull. Distribusi inverse Weibull merupakan distribusi yang dapat memodelkan data lifetime dengan hazard rate monoton (turun) maupun  non-monoton (upside-down bathtub shaped). Namun, untuk membuat kepadatan fleksibel dengan berbagai macam bentuk diperlukan generalisasi dari distribusi ini dengan menambahkan suatu parameter shape. Distribusi generalized inverse Weibull merupakan generalisasi dari distribusi inverse Weibull yaitu yang dibentuk dengan memangkatkan fungsi distribusi inverse Weibull dengan suatu parameter baru. Distribusi generalized inverse Weibull memiliki 2 parameter shape dan 1 parameter scale sehingga distribusi ini dapat menggambarkan shape dari fungsi hazard yang lebih beragam. Pada  skripsi ini, akan dibahas mengenai pembentukan distribusi inverse Weibull dan pembentukan distribusi generalized inverse Weibull, serta fungsi kepadatan probabilitas, fungsi distribusi, fungsi survival, fungsi hazard, dan karakteristik-karakteristik dari kedua distribusi tersebut. Penaksiran parameter dari distribusi generalized inverse Weibull menggunakan metode maksimum likelihood.
Lifetime data is usually used by researchers to determine the level of survival or failure rate of an object. Weibull distribution is a probability distribution that is often used to model the lifetime data. However, the Weibull distribution is only used to model the lifetime data with monotone failure rate or monotone hazard rate. So that, a new distribution is needed to model the lifetime data with varying characteristics of failure rates or hazard rates. Inverse Weibull distribution is a distribution that is formed from the inverse transformation of the Weibull distribution. Inverse Weibull distribution is a continued distribution which can model lifetime data with a monotone hazard rate (constant, increase, and decrease) or non-monotone hazard rate (upside-down bathtub shaped). However, to make a density flexible with wide variety of shapes the generalizations from this distribution are needed by adding a shape parameter. Generalized inverse Weibull distribution is derived from generalization of inverse Weibull distribution that is formed by raising the inverse Weibull distribution function with a new parameter. Generalized inverse Weibull distribution has two shape parameters and one scale parameter. So, this distribution can describe a more diverse shapes of hazard function. In this skripsi, we will discuss how to construct inverse Weibull distribution and Generalized inverse Weibull distribution, and probability distribution function, cumulative distribution function, survival function, hazard function, and characteristics of these distributions. Parameter estimation of the generalized inverse Weibull distribution is using the maximum likelihood method.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vina Dwi Maharani
Abstrak :
Pemodelan data survival bergantung pada bentuk dari fungsi hazard-nya. Fungsi hazard dapat berbentuk monoton (monoton naik dan monoton turun) dan non-monoton (bathtub dan upside-down bathtub atau unimodal). Pada penelitian ini, diperkenalkan sebuah distribusi yang disebut distribusi extended inverse Lindley. Distribusi extended inverse Lindley merupakan distribusi yang dibangun dengan menggunakan transformasi terhadap distribusi Lindley dua paramater. Transformasi yang digunakan adalah transformasi power serta transformasi inverse agar distribusi yang dihasilkan mampu memodelkan data yang bersifat heavy tailed dan fungsi hazard-nya berbentuk upside-down bathtub. Pada penulisan ini, dibahas pembentukan distribusi extended inverse Lindley serta karakteristik dari distribusi tersebut yang meliputi fungsi distribusi, fungsi kepadatan peluang, fungsi survival, fungsi hazard, momen ke-r, skewness, kurtosis, modus dan median. Parameter dari distribusi extended inverse Lindley ditaksir menggunakan metode maximum likelihood. Pada akhir penelitian, dilakukan penerapan distribusi extended inverse Lindley terhadap data riil yaitu data survival lamanya waktu perbaikan untuk kerusakan penerima sinyal dan dibandingkan dengan distribusi lain yang mampu memodelkan data tersebut, dimana hasil dari perbandingan menunjukkan bahwa distribusi extended inverse Lindley mampu memodelkan data tersebut lebih baik dibanding dengan distribusi lain yang digunakan.
Modeling survival data depends on the shape of the hazard rate. Hazard rate may belong to the monotone (non-increasing and non-decreasing) and non-monotone (bathtub and upside-down bathtub). In this paper, a distribution called the extended inverse Lindley distribution will be introduced. Extended inverse Lindley distribution is a distribution that is formed from the transformation of the two parameter Lindley distribution. The transformations used are power transformation and inverse transformation. So that, the extended inverse Lindley distribution can model heavy tailed data with a upside-down bathtub hazard rate. In this essay, we will discuss how to construct extended inverse Lindley distribution and characteristics of these distributions. These include density function, probability distribusi function, survival function, hazard rate, r-th moment, skewness, kurtosis, mode dan median. Parameter estimation of the extended inverse Lindley distribution is using the maximum likelihood method. At the end of this paper, the application of the extended inverse Lindley distribution to real data in the form of survival data is the length of time to repair the damaged signal receiver and is compared with other distributions that are able to model the data, where the results of the comparison show that the application of the extended inverse Lindley distribution is better than the other distribution to model the data.
Depok: Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deta Putri Prakoso
Abstrak :
Pemodelan data waktu tunggu berperan penting dalam berbagai bidang ilmu. Distribusi Weibull merupakan salah satu distribusi waktu tunggu yang umum digunakan karena dapat menggambarkan kemencengan yang sering kali ditemui pada data waktu tunggu. Namun, distribusi Weibull tidak selalu memberi kesesuaian pada data waktu tunggu, terutama yang memiliki fungsi hazard non monoton. Pada skripsi ini, dibahas pembentukan suatu distribusi baru, yaitu distribusi New Extended Weibull, untuk mengatasi masalah tersebut. Distribusi New Extended Weibull dihasilkan dengan metode modifikasi new extended yang dikenalkan oleh Khosa, et. al (2020). Modifikasi dilakukan dengan menambahkan suatu parameter shape 0 pada distribusi Weibull dua parameter melalui fungsi bobot. Distribusi baru ini cocok untuk memodelkan data yang memiliki fungsi kepadatan peluang dengan kemencengan negatif ataupun positif dan fungsi hazard rate yang monoton maupun yang non monoton. Beberapa karakteristik dari distribusi New Extended Weibull seperti fungsi kepadatan peluang, fungsi distribusi, fungsi survival, fungsi hazard rate, dan momen ke-𝑟 juga dibahas. Kemudian, taksiran parameter dilakukan dengan menggunakan metode maksimum likelihood. Pada bagian akhir, dilakukan pemodelan menggunakan distribusi NE-W pada data masa remisi pada pasien penderita kanker kandung kemih sebagai ilustrasi
Lifetime data modeling plays an important role in various fields of science. The Weibull distribution is one of the most commonly used lifetime distributions because it can describe the skewness that is often found in lifetime data. However, the Weibull distribution does not always fit the data, especially those with non-monotonous hazard rate functions. This study explained the construction of a new distribution, namely the New Extended Weibull distribution, to overcome this problem. The New Extended Weibull distribution is developed using the new extended modification method introduced by Khosa, et. al (2020). Modification is done by adding a shape parameter 0 to the two-parameter Weibull distribution through a weight function. This new distribution is suitable for modeling data with negative or positive skewness probability density function and not only monotonous, but also data with non-monotonous hazard rate functions. Some of the characteristics of the New Extended Weibull distribution, such as probability density function, cumulative distribution function, survival function, hazard rate function, and the 𝑟-th moment are also discussed. Then, parameter estimation is done by using the maximum likelihood method. In the final section, a practical application is discussed using the NE-W distribution model on the remission times data of patients with bladder cancer
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library