Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 1 dokumen yang sesuai dengan query
cover
Harum Ananda Setyawan
"Karet merupakan salah satu komoditas penyumbang Produk Domestik Bruto (PDB) terbesar Indonesia. Indonesia merupakan negara dengan lahan karet terluas di dunia. Namun hasil karet yang diproduksi oleh Indonesia masih kalah dibanding Thailand. Hal tersebut disebabkan oleh pemberian pupuk, pestisida, dan perlindungan tanaman yang masih belum maksimal. Untuk perlindungan tanaman karet, di Indonesia biasanya dilakukan melalui penelitian daun karet. Akan tetapi, hal tersebut sangatlah tidak efisien dibanding dengan luas lahan yang ada. Sehingga diperlukan suatu metode yang lebih efisien untuk mendeteksi penyakit pada tanaman karet. Pada penelitian ini, penulis merancang suatu metode pendeteksian dini pengendalian penyakit tanaman karet menggunakan metode k-means clustering dan spectral clustering menggunakan citra digital yang diambil menggunakan drone. Melalui penelitian ini, diharapkan produksi tanaman karet dapat ditingkatkan dikarenakan proses pengendalian penyakit yang lebih efisien. Dengan penelitian ini, lahan karet sehat dan bergejala penyakit dapat dikelompokkan ke masing-masing klaster. Untuk selanjutnya, untuk lahan karet bergejala penyakit dapat dilakukan penelitian lebih lanjut untuk mengetahui jenis penyakit dan level penyakit yang dialami. Pendeteksian penyakit tanaman karet pada penelitian ini memiliki hasil 0,702 untuk k-means clustering dan 0,566 untuk spectral clustering dengan metode evaluasi silhouette score. Hal tersebut dikarenakan data citra yang masih sangat terbatas baik dalam jumlah maupun teknik pengambilan gambar. Namun untuk evaluasi menggunakan mean dan standard deviation, Spectral Clustering dengan perspective transform memiliki hasil yang lebih baik. Metode Spectral Clustering dengan data yang telah dilakukan perspective transform mampu mengklaster lahan karet yang hijau dan agak menguning.

Rubber is one of the largest contributors to Indonesia's Gross Domestic Product (GDP). Indonesia is a country with the largest rubber plantation in the world. However, the rubber produced by Indonesia is still inferior to Thailand. This is caused by the provision of fertilizers, pesticides, and plant protection that is still not optimal. For the protection of rubber plants, in Indonesia it is usually done through rubber leaf research. However, this is very inefficient compared to the existing land area. So we need a more efficient method to detect diseases in rubber plants. In this study, the authors designed a method for early detection of rubber plant disease control using the k-means clustering method and spectral clustering using digital images taken using drones. Through this research, it is hoped that the production of rubber plants can be increased due to a more efficient disease control process. With this research, healthy rubber fields and disease symptoms can be grouped into each cluster. Henceforth, for rubber fields with disease symptoms, further research can be carried out to determine the type of disease and the level of disease experienced. The detection of rubber plant diseases in this study had satisfactory results, namely  for k-means clustering and  for spectral clustering. This is because the image data is still very limited both in number and technique of taking pictures. However, for evaluation using the mean and standard deviation, Spectral Clustering with perspective transform has better results. The Spectral Clustering method with data that has been carried out with perspective transform is better able to cluster green and slightly yellow rubber land."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library