Ditemukan 3 dokumen yang sesuai dengan query
Ananda Fadhil Eka Prakoso
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.
The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Izzan Nufail Arvin
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.
The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Kevin Razaqa Aulia
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.
The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library