Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Iman Ansori
"

Sistem dehidrasi glikol di Lapangan X bertujuan untuk menjaga kandungan air pada gas jual di bawah 10 lbs/MMSCFD sesuai permintaan konsumen. Dengan kondisi operasi saat ini, terdapat permasalahan kehilangan glikol yang menyebabkan biaya operasional bertambah. Penyebab kehilangan glikol dapat disebabkan oleh berbagai macam faktor, diantaranya karena permasalahan kadar keasaman (pH) yang tidak netral pada sirkulasi glikol (Azubuike & Michael, 2017) serta terjadinya oksidasi pada make up tank (Trueba et al., 2022). Pada Lapangan X, kondisi operasi tersebut pun terjadi, yaitu pH sirkulasi glikol berkisar antara 5 hingga 6 yang terukur pada make up tank. Terdapat beberapa metode untuk mengatasi kehilangan glikol, diantaranya penerapan Pre-Inhibited Glycol dan Nitrogen Blanketing. Makalah tesis ini membahas tentang pemecahan masalah kehilangan glikol dengan analisis proses pada kondisi aktual dan penerapan modifikasi Pre-Inhibited Glycol, Nitrogen Blanketing dan Metode Kombinasi Pre-Inhibited Glycol - Nitrogen Blanketing. Perangkat lunak yang digunakan untuk simulasi adalah Aspen HYSYS v11. Tujuan dari simulasi proses modifikasi ini adalah mendapatkan variabel kehilangan glikol fraksi massa TEG > 0.98 dan kadar air pada sales gas kurang dari 10 lbs/MMSCF. Analisis keekonomian dilakukan untuk menilai kelayakan modifikasi pada glikol dengan kriteria NPV ≥ 0, IRR ≥ WACC dan Payback Period ≤ 10 tahun. Berdasarkan hasil 100 studi kasus pada simulasi Aspen HYSYS, metode Nitrogen Blanketing merupakan metode yang memenuhi kelayakan teknis dengan parameter fraksi massa TEG sebesar 0.9808 – 0.9860, water content sebesar 9.15 – 12.04, dan pH 6.78 – 6.87. Secara kelayakan ekonomis, metode Nitrogen Blanketing juga layak dengan nilai IRR, NPV dan Payback Period berturut-turut sebesar 31.9%, Rp. 31.143.295 dan 1 tahun. 


The glycol dehydration system in Field X aims to maintain the water content of selling gas below 10 lbs/MMSCFD according to consumer demand. With current operating conditions, there is a problem of glycol loss, which causes operational costs to increase. The cause of glycol loss can be caused by various factors, including the problem of non-neutral acidity (pH) in glycol circulation (Azubuike & Michael, 2017) and oxidation in the makeup tank (Trueba et al., 2022). In Field X, the operating conditions also occur, namely that the circulating pH of glycol ranges from 5 to 6, which is measured in the make-up tank. There are several methods to overcome glycol loss, including the application of Pre-Inhibited Glycol and Nitrogen Blanketing. This research discusses solving the problem of glycol loss by analyzing the process under actual conditions and applying modified Pre-Inhibited Glycol, Nitrogen blanketing, and Pre-Inhibited Glycol-nitrogen blanketing combination methods. The software used for the simulation is Aspen HYSYS v11. The purpose of this modification process simulation is to obtain a variable loss of glycol mass fraction TEG > 0.98 and a water content in sales gas of less than 10 lbs/MMSCF. Economic analysis was carried out to assess the feasibility of modifying glycol with the criteria of NPV ≥ 0, IRR ≥  WACC, and Payback Period ≤ 10 years. Based on the results of 100 case studies on the Aspen HYSYS simulation, the Nitrogen Blanketing method is a method that meets technical feasibility with TEG mass fraction parameters of 0.9808–0.8860, water content of 9.15–12.04, and pH 6.78–6.77. In terms of economic feasibility, the Nitrogen Blanketing method is also feasible with IRR, NPV, and Payback Period values ​​of 31.9%, Rp. 31,143,295 and 1 year.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fransiscus Adam Perkasa
"Gas yang dijual harus memenuhi kualitas tertentu diantaranya memiliki kandungan air maksimum 4-7 lb/MMSCF. Untuk mencapai kualitas tersebut diperlukan proses Gas Dehydration Unit (GDU) menggunakan absorpsi dengan glikol. Jenis glikol yang dipakai adalah Trietilen Glikol (TEG). Pada sistem steady state dibuktikan bahwa nilai kandungan air maksimum yang terdapat pada sales gas hanya mencapai 3 lb/MMSCF yaitu dibawah standard sales gas sehingga dapat dikatakan Gas Dehydration Unit ini optimum. Akan tetapi sifat dari proses dipabrik adalah dinamis, disebabkan adanya gangguan pada proses tersebut. Gangguan tersebut menyebabkan ketidakefektifan dan ketidakstabilan pada proses tersebut, bahkan dapat menyebabkan kondisi bahaya, karena itu diperlukan pengendalian proses. Pengendalian proses yang diperlukan adalah yang mampu mempertahankan proses pada kondisi optimumnya.
Dalam penelitian ini akan dirancang pengendalian proses dengan pengendali Proportional Integral (PI) yang bekerja pada kondisi optimumnya. Penyetelan pengendali dilakukan dengan dua metode yaitu Ziegler Nichols dan Lopez. Sebagai hasilnya, pengendalian yang optimum pada pengendali tekanan unit absorber T-100 menggunakan Ziegler Nichols dengan nilai Kp dan Ti-nya adalah 87,5 dan 1,7. Pada pengendali suhu pada unit absorber T-100 menggunakan Lopez dengan Kp dan Ti-nya adalah 0,31 dan 20,08. Pada pengendali suhu unit regenerator T-101 menggunakan Lopez, pada pengendali suhu stage 2 nilai Kp dan Ti-nya adalah 0,25 dan 118. Sedangkan pada pengendali suhu stage 5 nilai Kp dan Ti-nya adalah 0,18 dan 14,35.

Sales Gas must meet certain quality which has a maximum water content 4-7 lb MMSCF. To achieve the required quality of the process, Gas Dehydration Unit (GDU) using absorption with glycol. Type of glycol used for this process is Triethylene Glycol (TEG). At steady state system proved that the value of the maximum water content contained in the sales gas only 3 lb/MMSCF which is lower than the standard sales gas specification, so it can be said that Gas Dehydration Unit is optimum. However, the characteristic process in real plant is dynamic, because there was disturbance in the process. The disturbance causes inefficiencies and instability in the process, and that can be dangerous too, so this plant need process control. Process control that is needed is a process control that is able to maintain the optimum condition.
The process control design in this research is using Proportional Integral (PI) controller for optimum work. Controller tuning is done in two methods, Ziegler Nichols and Lopez. As a result, optimum control in pressure absorber T-100 is using Ziegler Nichols tuning with its Kp and Ti each valued 87,5 and 1,7. Optimum control in temperature absorber T-100 is using Lopez tuning with its Kp and Ti each valued 0,31 and 20,08. While most optimum method of regenerator T-101 temperature control is using Lopez tuning with its Kp and Ti for stage 2 each valued 0,25 and 118. For stage 5 its Kp and Ti each valued 0,18 and 14,35.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S65719
UI - Skripsi Membership  Universitas Indonesia Library