Ditemukan 3 dokumen yang sesuai dengan query
Misbahuddin
"Pada routing multi-hop, cluster head yang dekat dengan base station berperan sebagai node perantara bagi cluster head yang jauh dari base station untuk menyampaikan paket data dari node reguler ke base station. Cluster head sebagai relay akan menghabiskan energi lebih cepat sehingga menyebabkan masalah hotspot. Makalah ini mengusulkan algoritma routing multi-hop dinamis bernama Data Similarity Aware untuk Dynamic Multi-hop Routing Protocol DSA-DMRP untuk memecahkan masalah hotspot, meningkatkan masa hidup jaringan dan skalabilitas jaringan, dan memenuhi persyaratan aplikasi yang dipertimbangkan kesamaan data dari node yang berdekatan. DSA-DMRP menggunakan teknik agregasi fuzzy untuk mengukur kemiripan data mereka agar partisi jaringan menjadi cluster ukuran yang tidak sama.
Dalam mekanisme ini, setiap node dapat mengenali dan mencatat simpul tetangga yang serupa. Selanjutnya, aturan K-hop Clustering Algorithm KHOPCA yang dimodifikasi digunakan untuk memilih cluster head dan membuat rute untuk transmisi intra cluster dan interkluster. DSA-DMRP dibandingkan dengan KHOPCA untuk menjustifikasi kinerjanya. Hasil simulasi menunjukkan bahwa, DSA DMRP dapat memperbaiki masa hidup jaringan dibanding KHOPCA, dan memecahkan masalah hotspot.
In multi hop routing, cluster heads close to the base station role as intermediate nodes for farther cluster heads to relay the data packet from regular nodes to base station. The cluster heads as relays will deplete their energy more quickly that causes hot spot problem. This paper proposes a dynamic multi hop routing algorithm named Data Similarity Aware for Dynamic Multi hop Routing Protocol DSA DMRP to solve the hot spot problem, improve the lifetime and scalability of the network, and satisfy the requirement of applications that consider the data similarity of adjacent nodes. The DSA DMRP uses fuzzy aggregation technique to measure their data similarity degree in order to partition the network into unequal size clusters. In this mechanism, each node can recognize and note its similar neighbor nodes. Next, the modified K hop Clustering Algorithm KHOPCA rules by adding a priority factor that considers residual energy and distance to the base station is used to select cluster heads and create the best routes for intra cluster and inter cluster transmission. The DSA DMRP was compared against the KHOPCA to justify the performance. Simulation results show that, the DSA DMRP can improve the network lifetime longer than the KHOPCA, and solve the hotspot problem."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2017
D2326
UI - Disertasi Membership Universitas Indonesia Library
Artikel Jurnal Universitas Indonesia Library
Muhammad Adi Nugroho
"Pengolahan citra telah mengalami banyak perkembangan dan semakin umum diaplikasikan. Salah satu pengaplikasiannya rekognisi wajah tiga dimensi, yang juga melibatkan estimasi pose wajah. Salah satu metode rekognisi citra, yaitu jaringan saraf konvolusi, berpotensi menjadi dasar dari sistem estimasi pose wajah. Operasi konvolusi diharapkan mampu meminimalisir pengaruh distorsi dan disorientasi objek, serta mampu mengefisiensikan parameter yang dibutuhkan. Namun, permasalahan noise atau derau belum secara eksplisit terselesaikan oleh jaringan saraf tiruan konvolusi.
Penelitian ini bertujuan memasukkan fitur sistem fuzzy yang efektif mengelola data samar ke dalam jaringan saraf tiruan konvolusi yang diaplikasikan untuk estimasi pose wajah. Perancangan dimulai dari menjabarkan fungsi masing-masing lapisan jaringan saraf tiruan, menjabarkan operasi-operasi aritmatika pada bilangan fuzzy, dan mencoba menggantikan neuron crisp pada jaringan saraf tiruan konvolusi umum menjadi neuron fuzzy, dan mengaplikasikannya untuk mengestimasi pose wajah. Sistem yang sudah dibangun kemudian diujicoba pada dataset yang dimiliki Departemen Teknik Elektro UI dan dibandingkan dengan CNN-crisp yang memiliki arsitektur serupa dengan parameter pembelajaran yang sama.
Hasil didapat menunjukkan sistem konvolusi fuzzy mencapai nilai kesalahan estimasi pose lebih rendah dari konvolusi crisp pada data berderau tanpa merubah hasil estimasi pada data tidak berderau.
Image processing has undergone many developments and is increasingly commonly applied. From limited two-dimensional recogniton, facial recognition has now being developed to be able to recognise three-dimensional features. This ability involves process of face pose estimation. One method of image recognition, the convolution neural network, has the potential to become the basis of the face pose estimation system. Convolution operation is expected to minimize the effect of distortion and disorientation of the object, and able to efficiently reduce the required parameters. However, the image noise problem has not been explicitly resolved by convolution neural networks. This study aims to include features of a fuzzy system that effectively manages fuzzy data into convolutional neural networks applied to head pose estimation. The design begins with describing the function of each layer of artificial neural networks, describing arithmetic operations on fuzzy numbers, and attempting to replace crisp neurons in convolution layer of convolutional neural into fuzzy neurons, and applying them to estimate head poses. The estimator system is then tested on a dataset owned by the Department of Electrical Engineering UI and compared with CNN-crisp that has a similar architecture with the same learning parameters. The results show that the fuzzy convolution system reaches less error of pose estimation value compared to the crisp convolution system, without changing the estimation value of image without noises."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2017
T49040
UI - Tesis Membership Universitas Indonesia Library