Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Marko Chindranata
Abstrak :
Data waktu tunggu merupakan data waktu hingga suatu kejadian (event) terjadi. Salah satu distribusi yang sering digunakan dalam memodelkan waktu tunggu adalah distribusi Weibull. Namun dalam pengaplikasiannya, distribusi Weibull memiliki sebuah kekurangan, yaitu bentuk fungsi hazard yang terbatas pada bentuk monoton. Oleh karena itu, diperlukan suatu metode untuk menggeneralisasi distribusi Weibull sehingga dapat memperluas variasi data yang dapat dimodelkannya. Salah satu perluasan tersebut adalah distribusi Weibull-Frechet (WFr). Distribusi Weibull-Frechet memiliki kelebihan dibanding distribusi Weibull, yaitu kemampuannya memodelkan data dengan fungsi hazard berbentuk unimodal. Metode yang digunakan dalam membentuk distribusi Weibull-Frechet adalah Weibull-G (WG). Metode Weibull-G menggunakan suatu fungsi W[G(x)] untuk menggabungkan distribusi Weibull dengan suatu distribusi sembarang yang memiliki fungsi distribusi kumulatif G(x). Oleh karena itu, penelitian ini membahas proses pembentukan distribusi Weibull-Frechet. Selain itu, dibahas juga karakteristik dari distribusi Weibull-Frechet beserta penaksiran parameter distribusi Weibull-Frechet dengan menggunakan metode penaksiran maksimum likelihood. Pada bagian akhir diberikan sebuah ilustrasi data menggunakan data waktu tunggu hingga pasien kanker lambung meninggal. Data tersebut dimodelkan menggunakan distribusi Weibull-Frechet, dengan distribusi Weibull dan distribusi Frechet sebagai pembanding. Hasil pemodelan menunjukkan bahwa distribusi Weibull-Frechet merupakan distribusi terbaik dalam memodelkan data waktu tunggu hingga pasien kanker lambung meninggal. ......Lifetime data is a type of data that consists of waiting time until an event occurs. The distribution usually used for modeling lifetime data is the Weibull distribution. However, Weibull distribution has a limitation in its application : it can only model data with a monotonic hazard function. Therefore, a method for generalizing The Weibull distribution is needed so it can model a greater variety of data. One of those generalizations is the Weibull-Frechet distribution (WFr). The Weibull-Frechet distribution has an advantage over the Weibull distribution, due to its capability in modeling data with unimodal hazard function. The method used in generating the Weibull-Frechet distribution is the Weibull-G (WG). The Weibull-G method combines the distribution of a Weibull distribution with an arbitrary distribution with a cumulative distribution function G(x) using a function W[G(x)]. Hence, this thesis studies how to generate a Weibull-Frechet distribution. Furthermore, it also studies the characteristics of the Weibull-Frechet distribution and how to estimate the distribution’s parameters using the maximum likelihood estimation method. At the end of this thesis, lifetime data of gastric cancer patients is given for illustration purposes. The data is modeled using the Weibull-Frechet distribution, and both the Weibull and Frechet distribution for comparison. The model result shows that the Weibull-Frechet distribution is the best distribution for modeling the lifetime data of gastric cancer patients.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Resta Agung Susilo
Abstrak :
Struktur material amorph Fe73Al5Ga2P8C5B4Si3 telah diamati dengan difraksi neutron pada temperatur ruang. Analisis struktural dilakukan dengan mencocokkan fungsi distribusi pasangan total permodelan dan eksperimen menggunakan algoritma evolusi differensial. Analisis serta permodelan dikerjakan menggunakan bahasa pemrograman C++. Jarak antar atom serta bilangan koordinasi hasil fungsi distribusi pasangan parsial Fe-Fe, Fe-P, Fe-C, Fe-B kemudian dibandingkan dengan lima fase kristal yang terbentuk setelah material tersebut dianiil. Hasil yang diperoleh menunjukkan jarak atom tetangga terdekat pada material amorph ini lebih besar daripada jarak atom tetangga terdekat pada kelima fase kristal yang terbentuk.
The structure of amorphous material Fe73Al5Ga2P8C5B4Si3 in room temperature has been investigated by using neutron diffraction. Structural analysis is done by fitting the experimental total pair distribution function with the modeled total pair distribution function using differential evolution algorithm. Simulation and analysis is written in C++ code. Interatomic distance and coordination number from each partial pair distribution function Fe-Fe, Fe-P, Fe-C, Fe-B is then compared with five crystalline phases that formed when this amorphous material annealed. The results show that interatomic distance from above atomic pair in amorphous material is larger than interatomic distance in five crystalline phases.
Depok: Universitas Indonesia, 2008
S29005
UI - Skripsi Open  Universitas Indonesia Library
cover
Michaelino Mervisiano
Abstrak :
Tugas akhir ini membahas mengenai distribusi invers gaussian yang merupakan distribusi probabilitas kontinu yang dapat mengatasi masalah kemencengan dan long-tail. Pembahasan meliputi fungsi kepadatan probabilitas, fungsi distribusi, fungsi survival, fungsi hazard, serta membentuk fungsi pembangkit momen. Kemudian, dicari bentuk mode, mean, variansi, kemencengan, dan kurtosis distribusi invers gaussian. Terakhir, dicari taksiran parameter dan distribusi dari taksiran parameter menggunakan MLE. Data Jug Bridge mengenai drainase digunakan sebagai ilustrasi. ...... This paper discusses about Inverse Gaussian Distribution, the continued probability distribution which can solve skew and long tail problem. At first, we study about probability density function, cumulative distribution function, survival function, hazard function, and form moment generating function. Then, we seek mode, mean, variance, skewness, and kurtosis of inverse gaussian distribution. Finally, we try to discover parameter estimation and distribution of parameter estimation using MLE. Jugde Bridge data about drianage will be used as illustration.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S47095
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ana Zuliastuti
Abstrak :
Pada skripsi ini dibahas mengenai perluasan dari distribusi Chen distribusi XTG Distribusi XTG merupakan perluasan dari distribusi Chen dengan penambahan scale parameter Distribusi XTG merupakan salah satu distribusi probabilitas yang memiliki fungsi hazard berbentuk bathtub Distribusi XTG diperoleh dengan melakukan transformasi variabel random dengan perkalian skalar yaitu untuk dan dimana Karakteristik dari distribusi XTG yang dibahas adalah pdf fungsi distribusi fungsi survival fungsi hazard momen mean dan variansi Selain itu juga dibahas mengenai estimasi parameter dengan Weibull Probability Paper WPP plot dan maximum likelihood estimator Subkasus dari distribusi XTG adalah distribusi Chen distribusi Exponential Power dan distribusi Weibull Pada akhirnya 2 data mengenai waktu tunggu terjadinya kerusakan pada lampu dan pada suatu perangkat elektronik akan digunakan sebagai ilustrasi. ......XTG distribution is a distribution obtained by extending the Chen distribution which is one of the bathtub hazard shaped distribution It is extended from the Chen distribution by adding the scale parameter In doing this a scalar multiplication ransformation is applied to the random variable i e T=αY for α>0 and Y~Chen (η,β)where η=λα. The caracteristics explained are pdf distribution function survival function hazard rate moment mean and variance Moreover parameter estimation using Weibull Probability Paper WPP plot and maximum likelihood estimator are also presented Subcases of the XTG distribution are the Chen distribution Exponential Power distribution and Weibull distribution Finally two data about failure times for lightbulb and electronic devices are used as illustration.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S46667
UI - Skripsi Membership  Universitas Indonesia Library
cover
Riyanto Dwihatma Setyawan
Abstrak :
Distribusi normal merupakan salah satu distribusi probabilitas data, yang banyak digunakan dalam berbagai bidang karena sifat ideal yang dimilikinya, yaitu distribusi probabilitas data-datanya terpusat di sekitar mean dan distribusi probabilitas data lainnya tersebar secara merata. Namun ada kasus-kasus tertentu di mana distribusi normal sebaiknya tidak digunakan karena akan menghasilkan analisis yang kurang sesuai, terutama ketika data memiliki kemencengan yang kuat dan mempunyai heavy-tail. Pada tugas akhir ini diperkenalkan distribusi probabilitas yang dapat memfasilitasi kemencengan data, yaitu distribusi skew-normal. Distribusi skew-normal merupakan bentuk perluasan dari distribusi normal dengan memasukkan parameter kemencengan. Tugas akhir ini memberikan penjelasan mengenai karakteristik-karakteristik dari distribusi skew-normal univariat dan perluasannya dengan memasukkan parameter location dan scale, serta distribusi skew-normal secara umum dalam bentuk multivariat. Karakteristik-karakteristik yang dimaksud adalah fungsi kepadatan probabilitas, fungsi distribusi, mean, variansi, fungsi pembangkit momen, dan sifat-sifatnya. ......The normal distribution is one of the probability distribution of data, which are widely used in various fields because of the nature of the ideal, namely the probability distribution of data centers around the distribution of average data and other probability is spread evenly. But there are certain cases where the normal distribution should not be used because it will produce less precise analysis, especially when the data has a strong skewness and heavy-tail. This final project will introduce a probability distribution which can facilitate the skewness of data, i.e skew-normal distribution. The skew-normal distribution is an extend form of normal distribution, allowing a skewness parameter. This final project will give an explanation about the chararteristics of the univariate skew-normal distribution and its extend to the location and scale family, and skew-normal distribution in general in multivariate form. The characteristics are probability density function, distribution function, mean, covariance, variance, moment generating function, and the properties of the distribution.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S740
UI - Skripsi Open  Universitas Indonesia Library