Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Rizal Adi Saputra
"Macular edema is a kind of human sight disease as a result of advanced stage of diabetic retinopathy. It affects the central vision of patients and in severe cases lead to blindness. However, it is still difficult to diagnose the grade of macular edema quickly and accurately even by the medical doctor's skill. This paper proposes a new method to classify fundus images of diabetics by combining Self-Organizing Maps (SOM) and Generalized Vector Quantization (GLVQ) that will produce optimal weight in grading macular edema disease class. The proposed method consists of two learning phases. In the first phase, SOM is used to obtain the optimal weight based on dataset and random weight input. The second phase, GLVQ is used as main method to train data based on optimal weight gained from SOM. Final weights from GLVQ are used in fundus image classification. Experimental result shows that the proposed method is good for classification, with accuracy, sensitivity, and specificity at 80%, 100%, and 60%, respectively."
Surabaya: Faculty of Information and Technology, Department of Informatics Institut Teknologi Sepuluh Nopember, 2014
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Ely Sudarsono
"Indonesia merupakan salah satu negara dengan penduduk terbanyak yang mengalami kebutaan yang disebabkan oleh katarak sebesar 77,7 %. Pendeteksian terhadap pasien katarak dapat dilakukan menggunakan citra fundus dengan metode komputasi. Salah satu metode komputasi populer dalam klasifikasi citra fundus adalah deep learning yang merupakan salah satu pendekatan machine learning. Pada tesis ini, model convolutional neural network (CNN) yang digunakan adalah arsitektur AlexNet dengan Lookahead-diffGrad optimizer. Data yang digunakan dalam penelitian ini diambil dari situs Kaggle yang berisi citra fundus katarak. Selanjutnya, dilakukan tahap pra-pengolahan pada citra seperti menerapkan resize dan menerapkan normalisasi agar semua citra dapat diinput ke dalam model dengan ukuran yang sama serta meningkatkan kinerja model. Hasil penelitian ini menunjukkan CNN dengan Lookahead-diffGrad optimizer pada dataset citra retina katarak dapat mengklasifikasikan data menjadi dua kelas, yaitu normal dan katarak, sehingga dapat membantu untuk mendiagnosis penyakit tersebut dengan baik. Selain itu, hasil terbaik juga diperoleh oleh CNN dengan Lookahead-diffGrad optimizer berdasarkan nilai loss sebesar 0,0010 dan akurasi 100 % dibandingkan berbagai optimizer lainnya untuk mengklasifikasikan dataset citra retina katarak.


Indonesia is one of the countries with the most people experiencing blindness due to cataracts at up to 77.7% of the population. Detection of cataract patients can be done using fundus images with computational methods. One of the popular computational methods in the classification of fundus images is deep learning, which is one of machine learning approaches. In this thesis, the convolutional neural network (CNN) model used is the AlexNet architecture with Lookahead-diffGrad optimizer. The data used in this study were taken from the Kaggle website which contains the images of cataract fundus. Furthermore, the pre-processing stage of the image is carried out such as applying resizing and applying normalization so that all images can be inputted into the model with the same size and improve the performance of the model. The results of this study indicate that CNN using the Lookahead-diffGrad optimizer on the retinal cataract image dataset can classify the data into two classes, namely normal and cataracts, so that it can help diagnose the disease properly. In addition, the best results were obtained by CNN with the Lookahead-diffGrad optimizer based on a loss value of 0.0010 and 100% accuracy compared to other optimizers for classifying the retinal cataract image dataset."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Radifa Hilya Paradisa
"ABSTRAK
Diabetic Retinopathy (DR) merupakan komplikasi jangka panjang dari Diabetes Mellitus (DM) yang mempengaruhi penglihatan karena adanya mikrovaskular pada retina. Hal ini dapat mengakibatkan gangguan penglihatan dan kebutaan jika ditangani terlambat. DR dapat dideteksi melalui pemeriksaan citra fundus. Salah satu pendekatan dalam mendeteksi DR pada citra fundus yaitu dengan pendekatan deep learning yang merupakan salah satu metode implementasi dari machine learning.  Dalam penelitian ini, digunakan metode Convolutional Neural Networks (CNN) dengan arsitektur ResNet-50 dan DenseNet-121. Data yang digunakan dalam penelitian ini diambil dari DIARETDB1 yang merupakan online database yang berisi gambar fundus. Selanjutnya, dilakukan tahap preprocessing pada citra untuk meningkatkan kinerja model seperti mengambil green channel dan menerapkan inverted green channel, mengubah citra warna menjadi grayscale, dan menerapkan Contrast Limited Adaptive Histogram Equalization (CLAHE) untuk penyeragaman kontras pada citra. Hasil penelitian ini menunjukkan bahwa model ResNet-50 lebih baik dibandingkan DenseNet-121 dalam mendeteksi DR. Hasil terbaik dari beberapa kasus testing model ResNet-50 yaitu accuracy, precision, dan recall masing-masing sebesar 92,2%, 93,6%, dan 92,6% dengan running time untuk training selama 6 menit 21,296 detik dan testing selama 1,174 detik.

ABSTRACT
Diabetic Retinopathy (DR) is a long-term complication of Diabetes Mellitus (DM) that affects vision because of the presence of microvascular retinal. This can result in visual impairment and blindness if treated late. DR can be detected by examining fundus images. One approach to detecting DR in fundus images is the deep learning approach which is one of the methods of implementing machine learning. In this study, the Convolutional Neural Networks (CNN) method is used with the ResNet-50 and DenseNet-121 architectures. The data used in this study were taken from DIARETDB1, which is an online database that contains fundus images. Then, pre-processing stage is carried out on the fundus image to improve model performance such as selected the green channel from the images and inverted it, converted the images into grayscale images, and applied Contrast Limited Adaptive Histogram Equalization (CLAHE) for uniform contrast in the images. The results of this study indicate that the ResNet-50 model is better than DenseNet-121 in detecting DR. The best results from several cases testing the ResNet-50 model are accuracy, precision, and recall of 92.2%, 93.6%, and 92.6% respectively with running time for training for 6 minutes 21.296 seconds and testing for 1.174 seconds."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rania Nur Farahiyah
"Retinopati hipertensi merupakan penyakit yang timbul pada retina akibat komplikasi dari hipertensi atau tekanan darah tinggi. Pemeriksaan gejala retinopati hipertensi penting untuk dilakukan supaya penanganan yang tepat dapat diberikan. Gejala retinopati hipertensi terdapat pada pembuluh darah di retina sehingga diagnosis dapat dilakukan melalui citra fundus retina. Penelitian ini memanfaatkan model Data-Efficient Image Transformer (DeiT) untuk mengklasifikasikan citra fundus retina menjadi dua kelas, yaitu kelas retinopati hipertensi dan kelas normal. Data yang digunakan dalam penelitian ini diperoleh dari empat database open-source, yaitu DRIVE, JSIEC, ODIR, dan STARE. Preprocessing berupa resize dan Contrast Limited Adaptive Histogram Equalization (CLAHE) diterapkan untuk menyeragamkan ukuran citra dan meningkatkan kontras citra. Generative Adversarial Network (GAN) digunakan untuk menghasilkan citra sintetis guna mengatasi masalah keterbatasan jumlah data serta meningkatkan variasi data yang dapat dipelajari oleh model DeiT. Penelitian ini menganalisis pengaruh metode GAN terhadap kinerja model DeiT dengan menggunakan metrik evaluasi accuracy, sensitivity, dan specificity. Analisis dilakukan dengan membandingkan tiga skenario: skenario A menggunakan data asli, skenario B menggunakan data hasil augmentasi GAN, dan skenario C menggunakan preprocessing CLAHE dan data hasil augmentasi GAN. Skenario A menunjukkan kinerja yang cukup baik dengan nilai rata-rata accuracy, sensitivitiy, dan specificity sebesar 94%, 97,7%, dan 84,6% untuk rasio pembagian data 70:30, serta 95,7%, 97%, dan 92,8% untuk rasio pembagian data 80:20. Skenario B mengungguli skenario sebelumnya dengan nilai rata-rata accuracy, sensitivitiy, dan specificity sebesar 96,4%, 97,2%, dan 95,7% untuk rasio pembagian data 70:30, serta 97,5%, 97,9%, dan 97,1% untuk rasio pembagian data 80:20. Pada skenario C, diperoleh nilai rata-rata accuracy, sensitivitiy, dan specificity sebesar 95,7%, 95%, dan 96,2% untuk rasio pembagian data 70:30, serta 95,5%, 94,9%, dan 96,4% untuk rasio pembagian data 80:20. Hasil penelitian menunjukkan bahwa penerapan metode GAN berhasil meningkatkan kinerja model DeiT, khususnya pada nilai specificity. Dari ketiga skenario yang diuji, skenario B yang memanfaatkan data sintetis hasil augmentasi GAN tanpa preprocessing CLAHE memberikan hasil yang paling unggul.

Hypertensive retinopathy is a disease that occurs in the retina due to complications from hypertension or high blood pressure. Examination of hypertensive retinopathy symptoms is important to ensure appropriate treatment can be performed. The symptoms of hypertensive retinopathy are found in the blood vessels of the retina, allowing diagnosis to be performed through retinal fundus images. This study uses the Data-Efficient Image Transformer (DeiT) model to classify retinal fundus images into two classes: hypertensive retinopathy and normal. The data used in this study were obtained from four different open-source databases: DRIVE, JSIEC, ODIR, and STARE. Preprocessing in the form of resizing and Contrast Limited Adaptive Histogram Equalization (CLAHE) was applied to standardize the image size and enhance the image contrast. Generative Adversarial Network (GAN) was used to generate synthetic images to address the problem of limited data availability and increase the variety of data that can be learned by the DeiT model. This study analyzes the impact of the GAN method on the performance of the DeiT model using evaluation metrics of accuracy, sensitivity, and specificity. The analysis was conducted by comparing three scenarios: scenario A using the original data, scenario B using GAN-augmented data, and scenario C using CLAHE preprocessing and GAN-augmented data. Scenario A showed fairly good performance with average accuracy, sensitivity, and specificity values of 94%, 97.7%, and 84.6% for a 70:30 data split ratio, and 95.7%, 97%, and 92.8% for an 80:20 data split ratio. Scenario B outperformed the previous scenario with average accuracy, sensitivity, and specificity values of 96.4%, 97.2%, and 95.7% for a 70:30 data split ratio, and 97.5%, 97.9%, and 97.1% for an 80:20 data split ratio. In scenario C, the average accuracy, sensitivity, and specificity values were 95.7%, 95%, and 96.2% for a 70:30 data split ratio, and 95.5%, 94.9%, and 96.4% for an 80:20 data split ratio. The results of the study indicate that the application of the GAN method successfully improved the performance of the DeiT model, particularly in terms of specificity. Out of the three scenarios tested, scenario B, which utilized GAN-augmented synthetic data without CLAHE preprocessing, yielded the best results."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amin Nur Ambarwati
"Katarak merupakan keadaan di mana lensa mata yang biasanya terlihat jernih dan bening menjadi keruh yang disebabkan oleh sebuah kumpulan protein yang terletak di depan retina. Hal ini menyebabkan jaringan lensa mata mulai rusak dan menggumpal, sehingga berkurangnya cahaya yang masuk ke retina dan pandangan akan terlihat buram, kurang berwarna, serta dapat menyebabkan kebutaan yang permanen. Mendiagnosis penyakit katarak pada seseorang dapat menggunakan proses pemeriksaan citra fundus, hasil dari citra fundus kemudian dideteksi menggunakan salah satu pendekatan deep learning. Dalam penelitian ini, digunakan pendekatan deep learning yaitu metode Convolutional Neural Networks (CNN) classic dan CNN LeNet-5 pada fungsi aktivasi ReLU dan Mish dalam mendeteksi katarak. Data yang digunakan dalam penelitian ini yaitu data ODR yang merupakan online database yang berisi citra fundus dengan bervariasi ukuran citra. Dataset kemudian memasuki tahap preprocessing dalam meningkatkan performa model seperti mengkonversikan citra RGB menjadi grayscale dari intensitas green channel, kemudian menerapkan proses binerisasi citra menggunakan thresholding untuk menyesuaikan target atau label berdasarkan diagnosis dokter dan mengetahui tingkat kerusakan bagian mata dalam mendeteksi mata mengalami katarak atau tidak. Hasil performa pada penelitian ini menunjukkan bahwa model CNN LeNet-5 dengan fungsi aktivasi Mish lebih baik dibandingkan model CNN clasic dengan fungsi aktivasi Mish dalam mendeteksi penyakit katarak. Hasil performa keseluruhan yang optimal pada penelitian ini berdasarkan nilai accuracy, precision, recall, dan F1- score secara berturut- turut yaitu 87%, 87,5%, 89,3%, 86,7%, dengan running time yang dibutuhkan pada training 95,67 detik dan testing 0,1859 detik.

Cataract is a condition in which the normally clear lens of the eye becomes cloudy due to a collection of proteins located in front of the retina. This causes the tissue of the eye's lens to begin to break down and clot, resulting in less light entering the retina and blurred vision, lack of color, and can lead to permanent blindness. Diagnosing cataracts in a person can use the process of examining the fundus image, the results of the fundus image are then detected using one of the deep learning approaches. In this study, a deep learning approach was used, namely Convolutional Neural Networks (CNN) classic and CNN LeNet-5 method on the ReLU and Mish activation functions in detecting cataracts. The data used in this study is ODR data which is an online database containing fundus images with varying image sizes. The dataset then enters the preprocessing stage to improve model performance, such as converting the RGB image to grayscale from the intensity of the green channel, then applying a binary image process using thresholding to adjust the target or label based on the doctor's diagnosis and determine the level of eye damage to detect cataracts or not. The performance results in this study indicate that the CNN LeNet- 5 model with Mish activation function is better than the CNN classic model with Mish activation function in detecting cataract disease. Optimal overall performance results in this study are based on the values of accuracy, precision, recall, and F1-score, respectively, namely 87%, 87,5%, 89,3%, 86,7%, with the running time required for training 95,67 seconds and testing 0,1859 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library