Ditemukan 2 dokumen yang sesuai dengan query
Zeveliano Zidane Barack
"Misalkan G = (V,E) adalah graf dengan V adalah himpunan simpul dan E adalah himpunan busur. Pelabelan tak teratur dari graf G adalah pelabelan-k busur φ : E → {1, 2, · · · , k} dari graf G sedemikian sehingga bobot dari seluruh simpul berbeda. Bobot dari simpul u ∈ V didefinisikan sebagai wtφ(u) = v∈N(u) φ(uv), dengan N(u) adalah himpunan simpul yang bertetangga dengan u. Nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur dengan label paling besar k disebut sebagai kekuatan tak teratur dari graf G. Misalkan G adalah graf dengan order n, pelabelan tak teratur modular dari graf G adalah pelabelan-k busur φ : E → {1, 2, · · · , k} sedemikian sehingga terdapat fungsi bobot yang bijektif wtφ : V → Zn , dengan Zn adalah grup bilangan bulat modulo n. Bobot modular didefinisikan dengan wtφ(u) = v∈N(u) φ(uv). Nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur modular dengan label paling besar k disebut kekuatan tak teratur modular dari graf G. Graf friendship dibangun dari kumpulan graf lingkaran C3 dengan sebuah simpul pusat bersama. Pada penelitian ini, akan dikonstruksi pelabelan tak teratur modular untuk graf friendship dan ditentukan kekuatan tak teratur modular untuk graf friendship.
Let G = (V,E) be a graph with V is the vertex set and E is the edge set of G. Irregular labeling of a graph G is an edge k−labeling φ : E → {1,2,··· ,k} of a graph G such that every weights of the vertices are all different. The weight of vertex u ∈ V is defined by wtφ(u) = v∈N(u) φ(uv), where N(u) denotes the set of all vertices that adjacent to u. The minimum number k such that a graph G has irregular labeling with largest label k is called irregularity strength of G. Let G be a graph with order n, modular irregular labeling of a graph G is an edge k−labeling φ : E → {1,2,··· ,k} such that there exists a bijective weight function wtφ : V → Zn, where Zn is a group of modulo n. The modular weight is defined by wtφ(u) = v∈N(u) φ(uv). The minimum number k such that a graph G has modular irregular labeling with largest label k is called modular irregularity strength of G. The friendship graph is constructed by a set of cycle graphs C3 with a common central vertex. In this research, we construct the modular irregular labeling for friendship graph and determine its modular irregularity strength."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Nanda Anzana
"Matriks antiadjacency dan adjacency adalah contoh matriks yang merepresentasikan suatu graf berarah. Entri-entri dari matriks antiadjacency dan adjacency dari suatu graf berarah merepresentasikan ada atau tidaknya busur berarah dari suatu simpul ke simpul lainnya. Pada skripsi ini dibahas mengenai polinomial karakteristik dan nilai eigen matriks antiadjacency dan adjacency graf friendship berarah siklik. Bentuk umum dari koefisien-koefisien polinomial karakteristik dari matriks antiadjacency didapatkan dengan menjumlahkan determinan matriks antiadjacency dari semua subgraf terinduksi baik yang siklik maupun asiklik. Sedangkan bentuk umum dari koefisien-koefisien polinomial karaktersitik dari matriks adjacency didapatkan dengan menjumlahkan nilai determinan matriks adjacency subgraf terinduksi yang siklik saja. Nilai eigen dari matriks antiadjacency dan adjacency dapat berupa bilangan riil dan bilangan kompleks. Nilai eigen diperoleh dengan metode faktorisasi dan subtitusi. Dari hasil penelitian diperoleh bahwa koefisien polinomial karakteristik dan nilai eigen dari matriks antiadjacency dan adjacency dapat dinyatakan dalam fungsi yang bergantung pada jumlah segitiga pada graf friendship berarah siklik.
ABSTRACTAntiadjacency and adjacency matrices are examples of matrices that represent a directed graph. The entries of the antiadjacency and adjacency matrices of a directed graph represent the presence or absence of directed arcs from one vertex to the others. This undergraduate thesis discusses the polynomial characteristics and eigenvalues of antiadjacency and adjacency matrices of directed cyclic friendship graphs. The general form of the coefficients of the characteristic polynomial of the antiadjacency matrix is obtained by adding the determinant of antiadjacency matrix of all the induced subgraphs, cyclic or acyclic. While the general form of the coefficients of the characteristic polynomial of the adjacency matrix is obtained by adding the determinant of adjacency matrix of the cyclic induced subgraphs. The eigenvalues of the antiadjacency and adjacency matrices can be real or complex numbers. The eigenvalues are obtained by the factorization and substitution methods. The result obtained shows that the characteristic polynomial coefficients and eigenvalues of the antiadjacency and adjacency matrices depend on the number of triangles in the cyclic directed friendship graph.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library