Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Universitas Indonesia, 2004
TA304
UI - Tugas Akhir  Universitas Indonesia Library
cover
Sidik Noertjahjono
"Detektor yang baik merupakan divais yang mampu bekerja pada frekuensi yang lebar, peka terhadap foton yang datang dan tidak menimbulkan derau yang mengganggu dalam proses komunikasi maupun dalam bidang instrumentasi.
Untuk maksud tersebut dipilih jenis fotodioda jenis p-i-n dengan bahan aktif semikonduktor GaInAsP sebagai campuran empat macam bahan semikonduktor dari komposisi III dan V pada tabel periodik kimiawi.
Dalam tesis ini dibahas tentang perhitungan dan analisa karakteristik fotodioda p-i-n, dari analisa diketahui bahwa hal ini sangat dipengaruhi aleh ketebalan lapisan yang atas (p+), sedangkan lapisan i (intrinsik) pada ketebalan tertentu sampai maksimum tidak mengalami peningkatan effisiensi, disamping itu unjuk kerja fotodioda secara umum sangat dipengaruhi pula oleh nilai resistansi bebannya.
A good device for detector should operate at. wide band range, and sensitive to incident photon and produce low noise in both fields of communication and instrumentation systems. For that purpose the device used a type of p-i-n photodiode which contains active layers as quaternary of 111 and V compound in periodic system.
This thesis describes design and analysis of p-i-n photodiode to be used as a laser detector for )..= 1,.28 wiz . The Result show that the thickness of first (p+) and second (z) layer will limit the external efficiency of the detector, and also the load resistance will effect influence the performance of the detector.
"
Depok: Fakultas Teknik Universitas Indonesia, 1997
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sianipar, Bill Clinton
"[ABSTRAK
Sensor cahaya merupakan perangkat yang mengubah besaran analog (besaran cahaya) menjadi sinyal listrik. Ada bermacam sensor cahaya yang sering digunakan, beberapa di antaranya ialah sensor cahaya LDR, fotodioda, dan OPT101. Masing-masing sensor memiliki karateristik yang berbeda. Perbedaan yang mencolok adalah jenis sinyal listrik yang dihasilkan oleh masing-masing sensor sebagai dampak dari terangsangnya material di dalam sensor terhadap perubahan besar penerangan. Sensor cahaya LDR memiliki resistansi yang semakin kecil nilainya dengan bertambah besarnya penerangan, sedangkan arus listrik dari fotodioda semakin besar nilainya dengan penerangan yang semakin besar pula nilainya. Modul praktikum sensor cahaya mampu untuk memberikan semua fitur yang diperlukan untuk mempelajari karakteristik sensor-sensor cahaya tersebut dengan menggunakan pengatur besar penerangan, dan rangkaian-rangkaian pendukung seperti voltage divider dan low-pass filter.
ABSTRACT
Light sensor is a device that is able to change analog property (light) into electric signal. There are various kinds of light sensors such as LDR, photodiode, and OPT101. Each sensor has different and unique specification. The difference between those three sensors that is easy to be identified lies in the kind of output signal of each kind of light sensor. The output comes out of each of the light sensors as the respond of the sensor's material that reacts to the change of lighting. The LDR?s resistance gets lower as the amount of incident light gets higher, the electric current from the photodiode gets higher as the amount of incident light gets higher too. This light sensor practicum module has all of the features, like the lighting controller, voltage divider and low-pass filter electric circuits, that are required to learn about each sensor's characteristic.;Light sensor is a device that is able to change analog property (light) into electric signal. There are various kinds of light sensors such as LDR, photodiode, and OPT101. Each sensor has different and unique specification. The difference between those three sensors that is easy to be identified lies in the kind of output signal of each kind of light sensor. The output comes out of each of the light sensors as the respond of the sensor's material that reacts to the change of lighting. The LDR?s resistance gets lower as the amount of incident light gets higher, the electric current from the photodiode gets higher as the amount of incident light gets higher too. This light sensor practicum module has all of the features, like the lighting controller, voltage divider and low-pass filter electric circuits, that are required to learn about each sensor's characteristic., Light sensor is a device that is able to change analog property (light) into electric signal. There are various kinds of light sensors such as LDR, photodiode, and OPT101. Each sensor has different and unique specification. The difference between those three sensors that is easy to be identified lies in the kind of output signal of each kind of light sensor. The output comes out of each of the light sensors as the respond of the sensor's material that reacts to the change of lighting. The LDR’s resistance gets lower as the amount of incident light gets higher, the electric current from the photodiode gets higher as the amount of incident light gets higher too. This light sensor practicum module has all of the features, like the lighting controller, voltage divider and low-pass filter electric circuits, that are required to learn about each sensor's characteristic.]"
Universitas Indonesia, 2015
S62560
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhiffah Razan
"Deteksi obyek dalam air biasanya menggunakan teknologi sonar, namun sonar memiliki beberapa keterbatasan, yaitu dalam mendeteksi obyek lambat dan saat beroperasi di lingkungan bising, serta dapat mengganggu biota laut. Di lain sisi cahaya memiliki kecepatan rambat yang lebih tinggi di dalam air dan tidak menimbulkan suara yang dapat mengganggu biota laut. Pada skripsi ini dilaporkan sistem deteksi obyek dalam air dengan laser semikonduktor hijau berbasis Internet of Things (IoT) untuk mendeteksi ukuran dan posisi benda dalam air. Sistem ini menggunakan sensor fotodioda yang terhubung dengan ESP32 dan platform IoT Blynk. Tahap pertama dilakukan perancangan rangkaian deteksi cahaya tanpa dan dengan reflektor cahaya. Selanjutnya adalah mengintegrasikan sistem deteksi dengan IoT. Setelah itu dilakukan dua pengujian, yaitu pengujian rangkaian pendeteksi dan pengujian sistem deteksi obyek dalam air dengan cahaya laser semikonduktor. Pengujian rangkaian pendeteksi dilakukan dalam tiga kondisi berbeda, yaitu kondisi akuairum kosong, akuarium dengan air tawar, dan akuarium dengan air bersalinitas 35 ppt. Dari hasil pengujian ditunjukkan bahwa medium air dan salinitas mempengaruhi intensitas cahaya yang diterima sensor. Tegangan keluaran sensor dalam air tawar turun 56,91% dibandingkan kondisi akuarium kosong, sedangkan dalam air bersalinitas 35 ppt turun 70,44% dibandingkan dengan air tawar. Hasil pengujian menunjukkan bahwa reflektor cahaya meningkatkan tegangan keluaran sensor dalam air dengan salinitas 35 ppt hingga 120,28%, sedangkan dalam kondisi akuarium kosong dan air tawar masing-masing sebesar 45,25% dan 83,06%. Pengujian kedua adalah menguji sistem deteksi untuk memprediksi ukuran dan posisi obyek. Hasil menunjukkan bahwa sistem mampu mendeteksi obyek dengan ukuran rentang 8-12 cm, 16-20 cm, 24-30 cm, dan 32-35 cm.

Object detection in water usually uses sonar technology, but sonar has several limitations, namely in detecting slow objects and when operating in noisy environments, and can disturb marine life. On the other hand, light has a higher propagation speed in water and does not cause noise that can disturb marine life. In this thesis, an object detection system in water with a green semiconductor laser based on the Internet of Things (IoT) is reported to detect the size and position of objects in water. This system uses a photodiode sensor connected to ESP32 and Blynk IoT platform. The first step is to design a light detection circuit without and with a light reflector. Next is to integrate the detection system with IoT. After that, two tests were carried out, namely testing the detection circuit and testing the object detection system in water with semiconductor laser light. Testing of the detection circuit was carried out in three different conditions, namely the condition of an empty aquarium, an aquarium with fresh water, and an aquarium with 35 ppt salinity water. The test results show that the water medium and salinity affect the light intensity received by the sensor. The sensor output voltage in fresh water dropped by 56.91% compared to the empty aquarium condition, while in 35 ppt salinity water it dropped by 70.44% compared to fresh water. The test results show that the light reflector increases the sensor output voltage in water with a salinity of 35 ppt by 120.28%, while in empty aquarium and freshwater conditions by 45.25% and 83.06%, respectively. The second test was to test the detection system to predict the size and position of objects. The results show that the system is able to detect objects with sizes ranging from 8-12 cm, 16-20 cm, 24-30 cm, and 32-35 cm."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yohanes David Saputra
"Salah satu permasalahan utama saat dilakukan terapi intravena adalah cairan infus tidak boleh habis dan laju aliran tetesan cairan infus tetap stabil, maka diperlukan pengawasan (monitoring) terhadap aliran cairan infus secara kontinu. Namun demikian, keterbatasan jumlah perawat untuk terus melakukan kontrol terhadap pasien menjadi masalah yang kerap ditemui terutama di Rumah Sakit Umum di Indonesia. Smart Infusion adalah perangkat yang didesain untuk dapat melakukan deteksi, pengukuran, dan pengaturan kecepatan tetesan cairan infus dalam selang waktu tertentu. Perangkat ini memanfaatkan LED IR383 (λ = 940 nm, 150 mW) dan fotodioda NTE3033 sebagai detektor tetesan cairan infus, motor DC sebagai pengatur kecepatan, serta mikrokontroler ATmega16, yang terintegrasi langsung dengan perangkat komputer melalui antarmuka GUI. Pengujian perangkat Smart Infusion ini dilakukan dengan variasi densitas cairan Dextrose, variasi simpangan perangkat infus, dan variasi tingkat kecepatan tetesan. Tingkat kesalahan rata-rata perangkat ini yang hanya sebesar 2,0105% menjadikan perangkat ini layak untuk diuji coba lebih lanjut.

The main problems while performing intravenous therapy are both infusion solution bag must not be empty and flow of infusion solution must be stable, therefore continuous monitoring of infusion solution flow rate is needed. However, limited amount of nurses to check on each patient becomes a major issue, apparently on public hospitals in Indonesia. "Smart Infusion" is a device designed to detect, measure, and adjust the amount of infusion solution droplets per 30 seconds. The device is an integration of LED IR383 (λ = 940 nm, 150 mW) and photodiode NTE3033 as optical detector, DC motor as speed adjustment, ATmega16 as the processor, and GUI interface which allows the device to connect directly to a personal computer. Experiment of "Smart Infusion" consists of varying density of Dextrose, deviation of infusion set, and speed of infusion solution droplets. Average error rate of 2.0105% allow this device to have further experiments before being implemented.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57031
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jafar Muttaqin
"Pada penelitian ini telah dilakukan perancangan dan pembangunan sistem perangkat keras tomografi terkomputasi dua dimensi berbasis detektor fotodioda PIN dan menggunakan radiasi sinar gamma. Perangkat keras yang dibangun merupakan CT generasi pertama yang terdiri dari detektor fotodioda pin tunggal Teviso RD3024 dan sumber radiasi gamma Cs-137 yang sudah terkolimasi, sistem pencacah radiasi timer dan counter dari mikrokontroler , dan sistem pengendalian mekanik motor stepper rotasi maupun translasi untuk menggerakan material uji baik secara rotasi maupun translasi. Timer, Counter, sistem pengendalian motor serta serial komunikasi dengan PC telah diatur dan dijalankan melalui mikrokontroler Atmega16.
Serangkaian proses kalibrasi dilakukan untuk memastikan bahwa sistem ini bekerja dengan baik. Sistem pencacah pada perangkat keras ini memiliki nilai eror relatif yang cukup kecil yaitu 0,6 untuk pengukuran radiasi gamma secara berulang serta dapat menggerakan material uji untuk jarak terkecil yaitu 4,2 mm dan 7,2o untuk rotasi. Dengan nilai koefisien gerak tersebut, diperoleh data matriks dengan ukuran 24 gerak rotasi x 29 gerak translasi atau bergerak secara rotasi sebanyak 180o untuk setiap pergeseran material uji sampai jarak 12,18 cm. Kemudian data tersebut akan digunakan untuk rekonstruksi citra sehingga diperoleh citra dari material uji.

The design and manufacture for hardware of two dimensional gamma rays CT has been carried out in this research. The manufacture of hardware is first generation of CT that composed of from single PIN Photodiode detector Teviso RD3024 , Gamma source Cs 137 50 mCi that already collimated, radiation counting system timer and counter from microcontroller , and mechanical control system rotation and translation motor stepper for moving a sample on translation and rotation. Timer, counter, mechanical control system and cerial comunication with PC was controlled and run by microcontroller Atmega16.
Several process of caliration was conducted to ensure the system work properly. Counting system in this hardware has enough relative error, that is 0,6 for repeated measurement and capable to moving the sample for minimum distance at 4,3 mm and 7,2o for minimum rotation. With that motion coeffitient, had been obtained the matriks data with size 24 rotaion motion x 29 translation motion or move in rotation for 180o for each the sample shift for 12,18 cm distance. The the data will be used for image reconstruction that will give us the image of the sample.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library