Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Dadan Handani
Abstrak :
Pada pusat listrik tenaga uap (PLTU) unit 3/4 Tanjung Priok, energi kimia yang berupa bahan bakar (MFO/residu) yang dibakar akan menghasilkan kalor yang se1anjutnya digunakan untuk memanaskan/mendidihkan fluida kerja {air) sampai pada tekanan dan temperatur dimana air sudah berupa uap kering. Uap kering yang memiliki energi potensial dan energi kinetik terscbut diallrkan ke turbin uap untuk memutar sudu-sudu turbin pada putaran 3000 rpm. Ketika akan menaikan daya nyata generator (pada kondisi generator telah berbeban/terhubung ke jaringan), langkah pertama yang dilakukan adalah menambah jumlah aliran bahan bakar untuk. menghasilkan jumlah aliran uap kering lebih banyak (sesuai dengan daya yang akan dibangkitkan generator) yang selanjutnya dialirkan menuju inlet turbin. Kemudian daya nyata generator dinaikan dengan mengatur switch pembatas beban (load limit). Pada skripsi ini dilakukan pengamatan dan perhitungan daya mekanik kotor {gross meclumical power), load angle {Ogen) generator, dan efisiensi PLTU unit 4 Tanjung Priok. Hasil pcrhitungan memmjukan bahwa adanya penambahan jumlah bahan bakar yang masuk burner akan mcningkatkan produkasi uap rnasuk turbin schingga nteningkntkan daya mckanik kotor turbin dan load angle (daya generator). Jumlah bahan bakar yang dikonsumsi pada daya generator 20 MW, 35 MW, dan 40 MW berpengaruh terhadap efisiensi PLTU yang mana terjadi penurunan cfisiensi sebesar 2,5 % pada da)'a generator 40 MW dari 20 l\·iW dan 1,9% pada daya generator 35 MW dari 20 MW.
Depok: Fakultas Teknik Universitas Indonesia, 2006
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cahya Tri Anggara
Abstrak :
Beberapa tahun terakhir pengembangan teknologi pipa kalor melingkar (LHP) terus dilakukan. Pengembangan pipa kalor melingkar LHP banyak digunakan dalam berbagai bidang teknologi, seperti manajemen termal dari sistem pesawat ruang angkasa [3], solar kolektor [4] pendingin elektronik [5] dll. Beberapa penelitian juga melakukan pengembangan pada bentuk evaporator, sumbu kapiler dan fluida kerja pada pipa kalor. Meskipun pipa kalor telah dipelajari dan digunakan pada manajemen termal secara luas, masih sulit untuk mengetahui perilaku perubahan fase dalam evaporator dan kondensor hanya dengan bantuan pengukuran temperature dari permasalahan tersebut akan dilakukan sebuah penelitian tentang compensation chamber pipa kalor melingkar, Oleh karena itu, diperlukan untuk membuat visualisasi Pipa Kalor Melingkar (LHP) untuk memiliki pemahaman yang mendalam tentang perubahan fase dalam LHP. Pada penelitian ini akan dibagi menjadi dua parameter pengujian, yaitu yang pertama akan melakukan pengujian kinerja perpindahan panas compensation chamber LHP dan parameter pengujian kedua yaitu dengan melakukan visualisasi dengan membuat compensation chamber LHP dengan menggunakan kaca pyrex untuk mengamati fenomena perubahan fase. Dengan divariasikannya rasio pengisian dan jenis fluida kerja. Dari penelitian ini fluida kerja dengan rasio pengisian 60% dari volume total dan fluida kerja nano fluia Al2O3-Air 3% menghasilkan kinerja terbaik.
The last few years the development of loop heat pipes technology (LHP) continues. Development of loop heat pipes LHP widely used in various fields of technology, such as thermal management of spacecraft systems [3], solar collectors [4] electronic cooling [5] etc.. Some studies also doing development in the form of an evaporator, a capillary wick and a working fluid in the loop heat pipe. Although the loop heat pipe has been studied and used extensively in thermal management, it is still difficult to determine the behavior of phase change in the evaporator and condenser temperature measurement only with the help of these issues will be carried out a study on compensation chamber heat pipe circular, therefore, necessary to make visualization on loop Heat Pipe (LHP) to have a deep understanding of phase changes in the LHP. In this study will be divided into two testing parameters, namely the first one to do performance testing of heat transfer LHP compensation chamber and the second test parameters by performing the visualization by making LHP compensation chamber using a pyrex glass to observe the phase change phenomena. With filling ratio and the type of working fluid as variations. From this study, the working fluid with filling ratio of 60% of the total volume and the working fluid nanofluids Al2O3-water 3% yield the best performance.
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41570
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Rangga Aji Pamungkas
Abstrak :
[Peningkatan temperatur baterai litium-ion pada kendaraan listrik dapat mengakibatkan berkurangnya kapasitas dan jumlah siklus kerja sebuah baterai litium-ion. Bahkan, sel baterai dapat mengalami thermal runaway yang berakibat baterai litium-ion dapat terbakar dan meledak. Salah satu jenis alat penukar kalor yang bisa digunakan sebagai sistem manajemen termal pada baterai litium-ion adalah pipa kalor melingkar pelat datar. Penelitian ini dilakukan untuk menguji kinerja pipa kalor melingkar pelat datar dan mencari nilai hambatan termal yang dihasilkan dengan variasi fluida kerja akuades, alkohol, dan aseton dengan filling ratio sebesar 60%. Dari hasil penelitian ini, aseton merupakan fluida kerja terbaik yang menghasilkan hambatan termal sebesar 0,22 Watt/°C dan temperatur evaporator sebesar 49,89°C pada beban fluks kalor sebesar 1,61 Watt/cm2.;The increasing temperature of lithium-ion battery used in electric vehicle can cause major thermal runaway that can result in battery fire and explosion. One of the heat exchanger that can be used as thermal management system for lithium-ion battery of electric vehicle is Flat Plate Loop Heat Pipe. This research was conducted to test the performance of flat plate loop heat pipe and to determine the thermal resistance of flat plate loop heat pipe that used aquades, alcohol, and acetone as working fluid with 60% of filling ratio. The result showed that acetone is the best working fluid from among of the two other working fluids and had a heat pipe thermal resistance 0.22 Watt/°C with evaporator temperature was 49.89°C under maximum heat flux load of 1.61 Watt/cm2., The increasing temperature of lithium-ion battery used in electric vehicle can cause major thermal runaway that can result in battery fire and explosion. One of the heat exchanger that can be used as thermal management system for lithium-ion battery of electric vehicle is Flat Plate Loop Heat Pipe. This research was conducted to test the performance of flat plate loop heat pipe and to determine the thermal resistance of flat plate loop heat pipe that used aquades, alcohol, and acetone as working fluid with 60% of filling ratio. The result showed that acetone is the best working fluid from among of the two other working fluids and had a heat pipe thermal resistance 0.22 Watt/°C with evaporator temperature was 49.89°C under maximum heat flux load of 1.61 Watt/cm2.]
Fakultas Teknik Universitas Indonesia, 2015
S58609
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alkifli
Abstrak :
ABSTRAK
Suhu dingin (cryogenic) LNG yang dilepaskan selama proses regasifikasi, yang selama ini dibiarkan terbuang ke air laut, dapat dimanfaatkan untuk menghasilkan energi listrik menggunakan fluida kerja organic melalui siklus rankine organik (ORC) dua tahap, untuk meminimalkan kehilangan energy. Siklus rankine organic dua tahap terdiri dari evaporator, 2 tubin, 2 kondensor 2 pompa fluida kerja. Proses perpindahan panas terjadi antara LNG dan fluida kerja organik. Kriogenik dari LNG akan mendinginkan fluida kerja organik, yang akan digunakan untuk menggerakkan turbin untuk menghasilkan listrik pada generator. Pada penelitian ini dilakukan simulasi terhadap fluida kerja R1150 (ethylene), R170 (ethane) dan R290 (propane) melalui optimasi siklus ORC dua tahap di plant regasifikasi LNG dengan kapasitas 50 MMSCFD. Hasil simulasi memperlihatkan bahwa fluida kerj R170 (etana) mampu menghasilkan daya listrik mencapai 1209 kWh pada tekanan maksimum 2000 psi dan efisiensi 14,7% tertinggi dibandingkan dengan kedua fluida kerja lainnya. Parameter keekonomian yang dihasilkan adalah IRR 15,87%, NPV US$ 3.173.209 (positif) dan Pay Back Period 9,45 tahun (lebih rendah dari masa pengembalian hutang), menunjukkan bahwa penggunaan fluida kerja etana pada siklus ORC dua tahap masih memenuhi kelayakan proyek.
ABSTRACT
The cryogenic coldness of LNG released during the regasification process, which has been left wasted in seawater, can be used to produce electrical energy using organic working fluids through a two-stage organic rankine (ORC) cycle, to minimize energy loss. The two-stage rankine organic cycle consists of an evaporator, 2 tubins, 2 condensers 2 working fluid pumps. The process of heat transfer occurs between LNG and organic working fluid. Cryogenic from LNG will cool the organic working fluid, which will be used to drive turbines to produce electricity at the generator. In this study a simulation of the working fluid R1150 (ethylene), R170 (ethane) and R290 (propane) is carried out through optimization of the two-stage ORC cycle at the LNG regasification plant with a capacity of 50 MMSCFD. The simulation results show that the R170 (ethane) working fluid is capable of producing electrical power reaching 1209 kWh at a maximum pressure of 2000 kPa and the highest 14.7% efficiency compared to the others. The economic parameters produced were IRR 15.87%, NPV of US$ 3,173,209 (positive) and Pay Back Period of 9.45 years (lower than the debt repayment period), indicating that the use of ethane working fluid in the two-satge ORC cycle still met project eligibility.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Naufal Muflih Ramadhon
Abstrak :
Transesterifikasi adalah reaksi kimia yang digunakan untuk mengubah minyak hewani menjadi biodiesel yang dapat digunakan. Pada penelitian ini, bahan bakar biodiesel disintesis dari lemak sapi dalam reaktor menggunakan katalis CaO yang disintesis dari cangkang telur bebek. Katalis CaO berbasis limbah disintesis dari cangkang telur bebek melalui proses kalsinasi pada suhu 900 OC selama 2 jam. Transesterifikasi dilakukan pada suhu 55 OC pada 6 sampel dengan variasi penggunaan jumlah katalis (1.5 wt%, 6.5 wt%, dan 10 wt%) serta variasi katalis CaO komersial dan limbah. Katalis yang disintesis dari cangkang telur itik menghasilkan kadar Kalsium Oksida (CaO) sebesar 93.2%. Hasil pengujian sampel terbaik diperoleh untuk biodiesel dengan katalis 6.5% berbahan dasar limbah dan 10% katalis komersial. Untuk biodiesel dengan katalis berbasis limbah 6.5%, rendemen 90.75%, densitas 855.1 kg/m3, viskositas 5.73 mm2/cst, keasaman 1.69 mg-KOH/g, dan bilangan yodium 30.87 g-I2/100g. Untuk biodiesel dengan katalis berbasis limbah 10%, rendemen 90.81%, densitas 860.5 kg/m3, viskositas 6.52 mm2/cst, keasaman 2.03 mg-KOH/g, dan bilangan yodium 27.51 g-I2/100g. Angka keasaman standar tidak tercapai dimana maksimumnya adalah 0.5 mg-KOH/g. ......Transesterification is a chemical reaction used to convert animal oils into usable biodiesel. In this study, biodiesel fuel was synthesized from beef tallow in a reactor using a CaO catalyst which also synthesized from duck eggshells. Waste-based CaO catalyst synthesized from duck eggshells through a calcination process at 900 OC for 2 hours. Transesterification carried out at a temperature of 55 OC on 6 samples with variations in the use of the amount of catalyst (1.5 wt%, 6.5 wt%, and 10 wt%) as well as variations of commercial and waste based CaO catalysts. The catalyst synthesized from duck eggshells obtained a yield of 93.2% amount of Calcium Oxide (CaO). The synthesized biodiesel also tested for its chemical and physical properties to fulfill the Indonesian National Standard (SNI). The best sample test results were obtained for biodiesel with 6.5% catalyst from waste-based and 10% catalyst from commercial. For biodiesel with 6.5% waste-based catalyst, 90.75% yield, 855.1 kg/m3 density, 5.73 mm2/cst viscosity, 1.69 mg-KOH/g acidity, and 30.87 g-I2/100g iodine number. For biodiesel with 10% waste-based catalyst, 90.81% yield, 860.5 kg/m3 density, 6.52 mm2/cst viscosity, 2.03 mg-KOH/g acidity, and 27.51 g-I2/100g iodine number. The standard acidity number is not reached where the maximum is 0.5 mg-KOH/g.
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Budi Ismoyo
Abstrak :
Sumber panas seperti panas bumi, biomassa, dan lain-lain berpotensi untuk dipulihkan kembali. Pembangkit Organic Rankine Cycle (ORC) dapat digunakan untuk mengubah sumber panas bersuhu rendah menjadi energi listrik. Pemilihan scroll expander untuk pembangkit ORC sangat penting karena berfungsi dalam geometri tertentu. Penelitian ini akan menganalisis aspek lingkungan dan termodinamika yang dapat digunakan untuk menganalisa jenis fluida kerja dan scroll expander yang dipilih. Mengacu pada aspek lingkungan, terdapat isopentana, n-pentana, neopentana, R123, dan R1233zd yang dapat dipilih sebagai fluida kerja. Sedangkan mengacu pada aspek termodinamika; laju aliran fluida kerja, efisiensi siklus, perbedaan tekanan ekspansi ekspander dan daya expander dapat dipilih sebagai parameter untuk mengevaluasi, mensimulasi dan membandingkan fluida kerja tersebut. Simulasi menggunakan EES; n-pentane, isopentane, neopentane, R123, dan R1233zd sebagai fluida kerja. Fluida-fluida kerja tersebut disimulasikan pada volume konstan yaitu volume scroll expander, 97.9 cm3/revolution dengan rentang temperatur sumber panas 70-180 oC untuk mendapatkan laju aliran fluida kerja, efisiensi siklus dan perbedaan tekanan ekspansi ekspander. Hasil simulasi pada temperatur uap jenuh 145 oC menunjukkan laju alir fluida kerja yang dibutuhkan untuk mendapatkan volume uap 97.9 cm3/revolution pada 1500 RPM oleh n-pentane, isopentane, neopentane, R123, dan R1233zd berturut-turut sebesar 10.12 liter/menit, 12.67 liter/menit, 23.19 liter/menit, 12.79 liter/menit dan 18.66 liter/menit. Efisiensi siklus yang dihasilkan oleh n-pentane, isopentane, neopentane, R123, dan R1233zd berturut-turut sebesar 9.45 %, 9.18 %, 8.24 %, 9.77 % dan 9.18 %. Perbedaan tekanan ekspansi sistem yang dihasilkan oleh n-pentane, isopentane, neopentane, R123, dan R1233zd berturut-turut sebesar 12.64 bar, 14.69 bar, 20.75 bar, 16.71 bar dan 21.57 bar. Daya expander yang dihasilkan oleh n-pentane, isopentane, neopentane, R123, dan R1233zd berturut-turut sebesar 5.122 kW, 5.958 kW, 8.775 kW, 6.851 kW dan 9.02 kW. Dengan demikian berdasarkan aspek lingkungan dan aspek termodinamika diperoleh fluida kerja R1233zd dengan nilai ODP 0 dan GWP 1 serta memberikan efisiensi dan produksi daya yang cukup tinggi pada temperature sumber panas yang sama dibandingkan dengan fluida kerja lainnya. Pada percobaan menggunakan R134a sebagai fluida kerja diperoleh thermal power expander antara 0.1 – 0.8 kW dengan putaran dibawah 600 RPM dengan rata-rata aliran fluida kerja 6 liter/menit dan beda tekanan ekspansi expander antara 1.2 – 7.2 bar. Sedangkan putaran generator membutuhkan minimal 1500 RPM untuk menghasilkan tegangan dan frekuensi standar. Berdasar simulasi diperlukan debit fluida kerja 15 liter/menit sehingga dapat disimpulkan untuk memenuhi kebutuhan uap expander dengan fluida kerja R134a diperlukan laju aliran uap yang lebih besar. ......Heat sources such as geothermal, biomass, and others have the potential to be recovered. Organic Rankine Cycle (ORC) plant can be used to convert low-temperature heat sources into electrical energy. The selection of a scroll expander for the ORC plant is very important because it functions in a certain geometry. This study will analyze environmental and thermodynamic aspects that can be used to analyze the type of working fluid and the selected scroll expander. Referring to environmental aspects, there are isopentane, n-pentane, neopentane, R123, and R1233zd which can be selected as working fluids. While referring to thermodynamic aspects; The working fluid flow rate, cycle efficiency, expansion pressure difference of the expander, and the expander power can be selected as parameters to evaluate, simulate and compare the working fluid. The simulation uses EES; n-pentane, isopentane, neopentane, R123, and R1233zd as working fluids. The working fluids are simulated at a constant volume, namely scroll expander volume, 97.9 cm3 / revolution with a heat source temperature range of 70-180 oC to obtain the working fluid flow rate, cycle efficiency, and expansion pressure difference of the expander. The simulation results at a saturated steam temperature of 145 oC show the flow rate of the working fluid required by n-pentane, isopentane, neopentane, R123, and R1233zd are 10.12 liters/minute, 12.67 liters/minute, 23.19 liters/minute, 12.79 liters/minute and 18.66 liters/minute. The cycle efficiencies produced by n-pentane, isopentane, neopentane, R123, and R1233zd are 9.45%, 9.18%, 8.24%, 9.77%, and 9.18%. The difference in system expansion pressure produced by n- pentane, isopentane, neopentane, R123, and R1233zd are 12.64 bar, 14.69 bar, 20.75 bar, 16.71 bar, and 21.57 bar. The expander power produced by n-pentane, isopentane, neopentane, R123, and R1233zd are 5,122 kW, 5,958 kW, 8,775 kW, 6,851 kW and 9.02 kW. Thus, based on environmental and thermodynamic aspects, the working fluid R1233zd is obtained with ODP 0 and GWP 1 values and provides better efficiency and power production at the same thermal source temperature compared to other working fluids. In the experiment use R134a as working fluid, founded that thermal power of the expander 0.1 s.d 0.8 kW with revolution per minute under 600 RPM. The generator rotation need 1500 RPM to create standard voltage and frequency. Simulation result the flow rate of the working fluid minimum 15 liters/minute so to meet with the requirement, the expander need more bigger of vapor flowrate.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bolonni Nugraha
Abstrak :
Permasalahan energi dan lingkungan mendorong umat manusia untuk terus melahirkan inovasi-inovasi terbaru untuk mengedepankan aspek keberlanjutan. Salah satunya adalah modifikasi siklus Rankine konvensional dengan menggunakan fluida kerja organik. Teknologi tersebut dikenal sebagai organic Rankine cycle. Tujuan utamanya adalah untuk dapat memanfaatkan sumber panas dengan temperatur ­low-to-medium dengan range 700C-1500C dengan lebih optimal dan ekonomis untuk dikembangkan. Hal ini memungkinkan karena fluida kerja yang digunakan memiliki titik didih yang lebih rendah. Pada penelitian kali ini, peneliti melaksanakan simulasi dan analisis teoritis dengan menggunakan 2 kelompok variabel. Variabel terikat dan variabel bebas yang digunakan akan bergantian antara suhu sumber panas dengan pressure ratio sistem. Pada waktu yang bersamaan dilakukan juga variasi fluida kerja dengan kelompok calon fluida kerja yang sudah ditentukan lewat kajian-kajian. Pembahasan juga dilengkapi pertimbangan-pertimbangan dalam memilih komponen-komponen utama pada sistem organic Rankine cycle. Fluida kerja kandidat yang digunakan adalah R-601 (Pentane), R-123, R-600a (Isobutane), R-601a (Isopentane), dan R-124. Berdasarkan hasil simulasi, diperoleh bahwa dengan variasi pressure ratio, efisiensi sistem ORC tertinggi didapat oleh R-600a dengan ratio p3/p4 7.3 %. Sementara untuk variasi sumber panas, efisiensi sistem ORC tertinggi didapat oleh Pentane dengan suhu heating in sebesar 145 oC. ......Energy and environmental issues encourage humanity to continue to produce the latest innovations to prioritize aspects of sustainability. Contributions in increasing the portion of Renewable Energy (EBT) in Indonesia are important for all levels of society, including students. Exploitation and use of fossil fuels is deemed necessary to continue to be reduced because of the many losses that we will face in the future. One of them is a modification of the conventional Rankine cycle by using organic working fluids. This technology is known as organic Rankine cycle. The main goal is to be able to utilize heat sources with low-to-medium temperatures in the 700C-1500C range more optimally and economically to develop. This is possible because the working fluid used has a lower boiling point. In this study, student conduct simulations and theoretical analysis using 2 groups of variables. The dependent variable and the independent variable used will alternate between the temperature of the heat source and the system pressure ratio. At the same time, variations of the working fluid are also carried out with the group of working fluid candidates that have been determined through studies. The discussion is also equipped with considerations in selecting the main components in the organic Rankine cycle system. The working fluids candidates are R-601 (Pentane), R-123, R-600a (Isobutane), R-601a (Isopentane), and R-124. Results Based on the simulation, it is found that with variations in the pressure ratio, the highest ORC efficiency system is obtained by R-600a with a p3/p4 ratio of 7.3%. Meanwhile, for the heating temperature variation, the highest ORC efficiency is obtained by Pentane with a heating in temperature of 145 0C.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ilyas Savier Alfikri
Abstrak :
Karya tulis ini membahas simulasi dan optimasi tujuan ganda proses regasifikasi hidrogen cair. Tujuan penulisan karay tulis ini adalah untuk mengetahui potensi pemanfaatan energi dingin hidrogen cair. Terdapat dua faktor utama yang melatarbelakangi proses pemanfaatan energi dingin hidrogen. Pertama, energi yang dikonsumsi pada proses pencairan hidrogen adalah 3,3 kWh/kg hidrogen cair (Departement of Energy U.S.A., 2009). Kedua, energi yang tergandung dalam hidrogen adalah 120 MJ/kg (Van Hoecke et al., 2021). Proses pemanfaatan energi dingin hidrogen cair yang dibahas adalah kombinasi Siklus Brayton dan ekspansi. Simulasi dilakukan pada Aspen HYSYS V.10 dengan fluid package­ Peng-Robinson. Fluida kerja yang digunakan dalam simulasi adalah fluida kerja Helium dan fluida kerja campuran Helium-Neon. Optimasi dilakukan pada aplikasi MS Excel. Algoritma yang digunakan adalah modifikasi dari I-MODE yang dibuat oleh Sharma & Rangiah, 2013. Optimasi tujuan ganda memaksimalkan energi listrik yang dibangkitkan dan meminimalkan biaya pompa dengan variabel penentu adalah laju alir dan komposisi fluida kerja, serta tekanan penguapan hidrogen cair. Dengan laju alir hidrogen cair 30 ton/hari, diperoleh kondisi operasi yang optimum 1836 kg/jam fluida kerja Helium dengan tekanan penguapan sebesar 68 atm. Energi listrik yang dibangkitkan adalah 0,934 GWh per tahun dan biaya pompa yang dibutuhkan adalah $12.305.142. ......This paper discusses simulation and multi-objective optimization of regasification liquid hydrogen. This paper is written to identify the utilization of hydrogen cold energy potency. There are two main factors behind this study. The amount of energy consumed in the liquefaction process is 3.3 kWh/kg of liquid hydrogen (Departement of Energy U.S.A., 2009), and the hydrogen energy content is 120 MJ/kg (Van Hoecke et al., 2021). The process simulation is a combination of the Brayton Cycle and direct expansion. The simulation is conducted on Aspen HYSYS V.10 with Peng-Robinson fluid package. The working fluids that are used in this simulation are Helium and Helium-Neon mixture. The optimization is conducted in MS Excel. I-MODE algorithm (Sharma & Rangiah, 2013) is modified to run the optimization process. Multi-objective optimization will maximize the amount of electricity and minimize the cost of the pump by changing the flow rate and composition of the working fluid, and the regasification pressure. Liquid hydrogen flow rate set to be constant at 30 ton/h, the optimum condition is 1863 kg/h Helium as working fluid and regasification pressure at 68 atm. The amount of electricity generated is 0.934 GWh per year and the cost of the pump is $12.305.142.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library