Ditemukan 3 dokumen yang sesuai dengan query
Nalendra Dwimantara
Abstrak :
Kambuhnya kanker payudara bergantung pada stadium tumor awal, terapi yang dilakukan sebelumnya, dan tumor biologi. Pengukuran darah lengkap merupakan salah satu pemeriksaan laboratorium yang relatif murah, mudah dan efektif dalam mendiagnosis kanker. Analisis regresi kesulitan dalam membuat kesimpulan dari data yang mengandung sejumlah besar variabel penjelas yang saling berkorelasi. Profile regression mengadopsi sudut pandang yang lebih global, dimana kesimpulan didasarkan pada kelompok yang mewakili pola variabel penjelasnya. Pengelompokan dilakukan untuk menganalisis suatu data dengan melihat karakteristik tiap pengamatan pada data. Suatu data jika dibagi menjadi beberapa kelompok mengartikan data tersebut memiliki karakteristik pengamatan yang berbeda-beda. Analisis pada data yang heterogen bertujuan untuk mengidentifikasi subpopulasi yang homogen dan menentukan hubungan antar variabel dalam setiap subpopulasi. Finite Mixture Model (FMM) dengan pendekatan Bayesian digunakan untuk mengidentifikasi subpopulasi dari pasien kanker payudara berdasarkan pengukuran darah. Berdasarkan nilai Deviance Information Criterion (DIC) didapatkan bahwa subpopulasi yang terbentuk untuk data rasio pengukuran darah pasien kanker payudara adalah dua subpopulasi. Peluang pasien mengalami kekambuhan pada subpopulasi 1 sebesar 35% dan 72% pada subpopulasi 2. Sedangkan subpopulasi yang terbentuk untuk data inter-rasio pengukuran darah pasien kanker payudara yang terbentuk adalah dua subpopulasi. Peluang pasien mengalami kekambuhan pada subpopulasi 1 sebesar 9% dan 3% pada subpopulasi 2.
Recurrence of breast cancer depends on the initial tumor stage, previous therapies, and biological tumors. A complete blood test is one of the relatively inexpensive, easy and effective laboratory tests in diagnosing cancer. Simple regression analysis has difficulties in drawing conclusions from data that contain large numbers of explanatory variables that are correlated. Profile regression adopts a more global perspective, where conclusions are based on groups representing covariate patterns. Clustering method aims to analyze data by looking at the characteristics of each observation in the data. If the data is divided into groups, that means that the data has different observational characteristics. Analysis of heterogeneous data purposes to identify homogeneous subpopulations and determine the relationships between variables in each subpopulation. Finite Mixture Model (FMM) with Bayesian approach is used to identify subpopulations of breast cancer patients based on blood measurements. Based on the value of the Deviance Information Criterion (DIC), it was found that the number of subpopulations formed for the data of the ratio of blood measurements for breast cancer patients are two subpopulations. The probability of patients experiencing recurrence in subpopulation 1 was 35% and 72% in subpopulation 2. Whereas the number of subpopulations formed for the data of the inter-ratio data of breast cancer patients formed are also two subpopulations. The probability of patients experiencing recurrence in subpopulation 1 is 9% and 3% in subpopulation 2.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Jessie Mirra
Abstrak :
Seringkali analisis statistik beranggapan suatu data hanya berasal dari satu populasi saja. Padahal pada kenyataannya terdapat kondisi dimana suatu data bisa dibagi menjadi beberapa sub-populasi. Gaussian Finite Mixture Model adalah salah satu metode untuk memodelkan data heterogen yang memungkinkan berasal dari sub-populasi yang berbeda. Model ini berbentuk superposisi dari beberapa distribusi Gaussian. Jumlah distribusi akan ditentukan dengan menggunakan Akaikes Information Criterion dan model diagnostik. Estimasi parameter pada model ini menggunakan metode Bayesian, yaitu dengan menentukan distribusi prior untuk parameter model, digabungkan dengan likelihood yang akan menghasilkan distribusi posterior. Kemudian, Markov chain Monte Carlo-Gibbs Sampler digunakan untuk menarik sampel pada parameter dari distribusi poteriornya masing-masing.
......Commonly statistical analysis assume data comes from one population. But there are conditions where data might be generated from several sub-populations. Gaussian Finite Mixture Model (GFMM) is one of the methods to model heterogeneous data that might come from different sub-populations. This model was formed as a superposition of several Gaussian distribution, with different location parameter. Number of distributions will be determined using Akaike`s Information Criterion and model diagnostic. Parameter estimation is conducted using Bayesian method, that is by specifying the prior distribution for the models parameters, combined with the likelihood to produce the posterior distribution. Finnally, Markov chain Monte Carlo-Gibbs Sampler is implemented to withdraw sampel of parameters from the corresponding posterior distributions.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Jason Wijaya
Abstrak :
Dalam upaya untuk mengendalikan besarnya kerugian, memodelkan severitas klaim merupakan salah satu cara yang sering dilakukan oleh perusahaan asuransi. Terdapat beberapa cara untuk memodelkan severitas klaim, salah satunya dengan generalized linear model. Akan tetapi fakta sederhana bahwa setiap pemegang polis itu tidak sama sering diabaikan karena hasil yang diperoleh hanya disajikan untuk ârata-rataâ pemegang polis. Potensi variabilitas ini yang tercermin pada data asuransi dapat diidentifikasi dengan mengelompokkan pemegang polis ke dalam kelompok yang berbeda. Sehingga dari perilaku yang berbeda pada masing-masing kelompok memungkinkan perusahaan asuransi mengembangkan strategi untuk mengendalikan besarnya kerugian. Pada praktiknya, model yang sering digunakan untuk pengelompokan adalah model finite mixture, dengan setiap kelompok dimodelkan dengan fungsi kepadatan probabilitasnya (pdf) sendiri. Salah satu keluarga model finite mixture yang fleksibel untuk vektor acak yang terdiri dari variabel respon dan satu set kovariat yang disesuaikan dengan distribusi bersamanya adalah cluster-weighted model (CWM). CWM merupakan kombinasi linear antara distribusi marjinal kovariat dan distribusi bersyarat dari respons yang diberikan kovariat. Distribusi bersyarat pada CWM diasumsikan milik keluarga eksponensial dan kovariatnya diperbolehkan tipe campuran yaitu diskrit dan kontinu (diasumsikan gaussian). Selanjutnya, model dicocokkan ke dalam data (fitting the model) menggunakan Maximum likelihood estimation (MLE) untuk menaksir parameter model dengan algoritma ekspektasi-maksimalisasi (EM). Pemilihan model terbaik dievaluasi dari skor akaike information criterion (AIC) dan bayesian information criterion (BIC). Permasalahan penentuan jumlah cluster diselesaikan secara bersamaan dengan memilih model terbaik. Pada akhirnya, CWM dapat digunakan untuk meningkatkan pemahaman tentang perilaku pemegang polis dan karakteristik risikonya yang dihasilkan di setiap cluster. Penerapan metode ini diilustrasikan pada data asuransi mobil di Prancis.
......In an effort to control the amount of loss, modeling the severity of claims is one way that is often done by insurance companies. There are several ways to model claim severity, one of which is a generalized linear model. However, the simple fact that every policyholder is not the same is often overlooked because the results obtained are only presented for the "average" policyholder. This potential for variability reflected in insurance data can be identified by classifying policyholders into different groups. So that the different behavior of each group allows insurance companies to develop strategies to control the amount of losses. In practice, the model often used for grouping is the finite mixture model, with each group being modeled with its own probability density function (pdf). One of the flexible finite mixture model families for random vectors consisting of a response variable and a set of covariates adjusted for their common distribution is the cluster-weighted model (CWM). CWM is a linear combination between the marginal distribution of the covariates and the conditional distribution of the responses given by the covariates. The conditional distribution on CWM is assumed to belong to the exponential family and the covariates are allowed mixed types, namely discrete and continuous (assumed to be gaussian). Next, the model is fitted to the data (fitting the model) using Maximum likelihood estimation (MLE) to estimate the model parameters with the expectation-maximization (EM) algorithm. Selection of the best model was evaluated from the Akaike information criterion (AIC) and Bayesian information criterion (BIC) scores. The problem of determining the number of clusters is solved simultaneously by selecting the best model. In the end, CWM can be used to increase understanding of policyholder behavior and the resulting risk characteristics in each cluster. The application of this method is illustrated in data on auto insurance in France.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library