Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Satrio Amarela
Abstrak :
ABSTRAK
Sekitar 90% bijih mangan di dunia digunakan untuk pembuatan ferromangan dan ferrosilicomangan sebagai material paduan dalam proses steel making. Penambahan unsur mangan dalam wujud paduan ferromangan pada proses steel making mampu meningkatkan kekerasan dan ketangguhan baja. Ferromangan diperoleh dari pengolahan bijih mangan metallurgical grade dengan proses peleburan. Bijih mangan kadar rendah, melalui penelitian sebelumnya oleh Hendri (2015) dan Noegroho (2016), tidak ekonomis untuk dilebur menjadi ferromangan 􀁇􀁈􀁑􀁊􀁄􀁑􀀃􀀰􀁑􀀃􀂕􀀙􀀓􀀈􀀃􀁖􀁈􀁋􀁌􀁑􀁊􀁊􀁄􀀃􀁅􀁌􀁍􀁌􀁋􀀃 mangan kadar rendah harus dibenefisiasi terlebih dahulu untuk meningkatkan kadar mangan dan rasio Mn/Fe dalam bijih. Bijih mangan kadar rendah pada penelitian ini merupakan bijih mangan lokal asal Lampung dan Jawa Timur. Benefisiasi dilakukan menggunakan teknik gravity separation dan reduction roasting selama 30 menit menggunakan 20% batu bara dilanjutkan magnetic separation pada medan magnet ±500 gauss. Bijih mangan dihaluskan ke dalam ukuran -20+40, -40+60, dan -60+80 mesh dan temperatur reduction roasting divariasikan pada 500oC, 700oC, dan 900oC. Pengujian XRD dan XRF dilakukan dalam mengarakterisasi sampel awal dan hasil. Rasio Mn/Fe dan kadar mangan pada bijih asal Lampung masing-masing sebesar 0,90 dan 7,83% sementara pada bijih asal Jawa Timur masing-masing sebesar 1,356 dan 18,52%. Setelah dibenefisiasi, hasil terbaik dari proses gravity separation pada bijih Lampung tercapai pada rasio Mn/Fe 0,95 dengan kadar Mn 9,4% pada 89,75% recovery berat sementara pada bijih Jawa Timur diperoleh pada rasio Mn/Fe 3,32 dengan kadar mangan 40,48% pada 2,09% recovery berat. Selanjutnya, hasil terbaik dari reduction roasting dilanjutkan magnetic separation pada bijih Lampung diperoleh pada rasio Mn/Fe 1,96 dan kadar mangan 6,81% pada 36 wt% recovery, sementara pada bijih Jawa Timur, tercapai pada rasio Mn/Fe 3,99 dan kadar mangan 34,31% pada 44 wt% recovery.
ABSTRACT
About 90% of manganese ore is utilized for ferromanganese and ferrosilicomanganese production as alloying metal in the steel making process. The addition of manganese in the form of ferromanganese to the steel making process is able to increase hardness and toughness of steel. Ferromanganese is obtained from the metallurgical grade manganese ore processing through the smelting process. Low grade manganese ore, according to the previous research from Hendri (2015) and Noegroho (2016), was not economic for direct smelting to obtain ferromanganese with Mn 􀂕􀀙􀀓􀀈􀀑􀀃 Therefore, low grade manganese ore must be beneficiate first to enhance the manganese grade and its ratio. Low grade manganese ore in this research are a local ore from Lampung and East Java. The steps on the beneficiation process are including gravity separation and reduction roasting for 30 minutes using 20% of coal followed by magnetic separation at the magnetic intensity of ±500 Gauss. The particle size was reduced into -20+40, - 40+60, and -60+80 mesh and the temperature of reduction roasting was varied at 500oC, 700oC, and 900oC. XRD and XRF testing was conducted for the characterization of ore and the sample results. Mn/Fe ratio and manganese content in Lampung ore is respectively 0.9 and 7.83%, while in East Java ore is respectively 1.356 and 18.52%. After beneficiation, the best results from gravity separation of Lampung ore was obtained at 0.95 of Mn/Fe ratio and 9.4% of manganese content at 89.75% of weight recovery, while in East Java ore was obtained at 3.32 of Mn/Fe ratio and 40.48% of manganese content at 2.09% of weight recovery. Then, the best results of reduction roasting followed by magnetic separation of Lampung ore was obtained at 1.96 of Mn/Fe ratio and 6.81% of manganese content at 36% of weight recovery, while in East Java ore was obtained at 3.99 of Mn/Fe ratio and 34.31% of manganese content at 44% weight recovery.
2016
S63231
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eka Bobby Saputra
Abstrak :
[ABSTRAK
Logam ferromangan adalah salah satu unsur paduan penting pada baja untuk meningkatkan sifat mekanis, ketahanan aus, dan kekerasannya. Bentuk ferromangan (FeMn) telah diatur dalam standard ASTM dengan kadar minimal sebesar 75% Mangan (Mn). Tujuan penelitian ini adalah pembuatan logam FeMn dengan kandungan minimal 60%Mn dari bijih mangan lokal dan mempelajari efek dari basasitas terak yang dipengaruhi oleh penambahan kapur sebagai zat aditif dalam proses pembuatan ferromangan terhadap jumlah produk ferromangan yang dihasilkan dan konsumsi energi yang dibutuhkan dalam proses tersebut. Dalam penelitian ini digunakan bijih mangan lokal kadar menengah dari daerah Jember-Jawa Timur 39.38 Mn ? 2.89 Fe ? 26.58 SiO2 (Medium Grade Ore) dengan teknologi Mini Sub-merged Arc Furnace (SAF) di UPT BPM LIPI, Lampung. Setiap satu kali proses, digunakan 30 kg bijih mangan (Ø ±30mm), 7.5 kg kokas, dan jumlah batu kapur yang bervariasi, yaitu; 8, 10, 12, dan 14 kg. Proses peleburan berlangsung pada temperatur 1200-1500 oC. Kemudian hasil akan dianalisa dengan menggunakan XRF (X-Ray Fluoroscence), XRD (X-Ray Diffraction), AAS (Atomic Absorbtion Spectrometry), dan Proksimat. Hasil penelitian menunjukan bahwa dengan meningkatnya basasitas terak (dari 0.32 hingga 0.76) akan meningkatkan jumlah produk ferromangan hingga 8.2 kg FeMn, kemudian memaksimalkan kadar % mangan yang tereduksi pada logam hingga mencapai komposisi kimia yang optimal (78,13 Mn-12,65 Fe-8.93 Si), menekan konsumsi energi hingga 9.8 kwh/kg ferromangan, menekan angka konsumsi elektroda, dan menghasilkan prosentase efisiensi proses berupa % yield yang cukup tinggi yakni sebesar 58.61%. Hasil lain yang menunjang proses pengolahan ferromangan dengan meningkatnya hasil basasitas terak adalah tercapainya suhu reaksi yang tinggi yakni sebesar 15940C sehingga membuat reduksi oksida mangan pada terak menjadi mangan pada logam semakin baik, kemudian jumlah terak juga dapat ditekan. Selanjutnya secara tinjauan aspek ekonomi dari keempat kali proses penelitian, maka didapatkan hasil yang paling menguntungkan sebesar Rp 5.731,-/proses. ABSTRACT
Ferromanganese metal is an important alloying element in steel production industry used to maximize its mechanical properties such as wear resistance and hardness. The most common form of ferromanganese according to ASTM standard contain min.75%Mn and max.25%Fe inside the product. The target of this research is to obtain ferromanganese metal with min.60%Mn using medium grade manganese ore (39.38 Mn ? 2.89 Fe ? 26.58 SiO2) from Jember district - East Java, yet the effect of its slag basicity will also support the most optimum result. This kind of basicity will determined by the amount of limestone as fluxing agent which added to the furnace. Moreover, this study will focus to the effect of its slag basicity on the number of ferromanganese product and the amoung of energy consumption. This study was taking place at UPT BPM LIPI Lampung, Sumatera. Using their Mini Sub-merged Arc Furnace (SAF) the process began without any beneficiation processs for its raw material. Manganese ore Ø ±30mm, cokes, and limestones were added at the same time to the SAF and melted at 1200-1450 oC. Processes were repeated 4 times with each process using 30 kg manganese ore, 7.5 kg cokes, and limestones which varied from 8, 10, 12, and 14 kg. Validity of this study supported by the chemical analysis which took place before and after reduction process using some tools such as XRF (X-Ray Fluoroscence), XRD (XRay Diffraction), AAS (Atomic Absorbtion Spectrometry), and Proxymate analysis. The result of this research showed an increasing trend in product?s quality as the slag basicity and the amount of limestone increased. As the slag basicity increase, the number of ferromanganese metal products were also increased until 8.2 kg FeMn and the amount of manganese element in metal phase also showed the most optimum chemical composition of ferromanganese metal (78,13 Mn- 12,65 Fe-8.93 Si). Furthermore, the energy consumption can be reduced until 9.8 kwh/kg FeMn as well as the electrodes consumption and also the efficiency percentage or % yield process can be increased up to 58.61%. Other parameters which used to support these 4-times-research plan was the temperature level which turned out to be as high as 15940C and helped the reduction process of manganese oxide into manganese metal became easier. Not only to obtain more manganese content in metal phase, but also this level of reduction temperature can reduced the amount of slag. Finally, in addition to support the optimum data, economic analysis also showed that this composition was the most profitable process with Rp 5.731,- /process as its profit., Ferromanganese metal is an important alloying element in steel production industry used to maximize its mechanical properties such as wear resistance and hardness. The most common form of ferromanganese according to ASTM standard contain min.75%Mn and max.25%Fe inside the product. The target of this research is to obtain ferromanganese metal with min.60%Mn using medium grade manganese ore (39.38 Mn – 2.89 Fe – 26.58 SiO2) from Jember district - East Java, yet the effect of its slag basicity will also support the most optimum result. This kind of basicity will determined by the amount of limestone as fluxing agent which added to the furnace. Moreover, this study will focus to the effect of its slag basicity on the number of ferromanganese product and the amoung of energy consumption. This study was taking place at UPT BPM LIPI Lampung, Sumatera. Using their Mini Sub-merged Arc Furnace (SAF) the process began without any beneficiation processs for its raw material. Manganese ore Ø ±30mm, cokes, and limestones were added at the same time to the SAF and melted at 1200-1450 oC. Processes were repeated 4 times with each process using 30 kg manganese ore, 7.5 kg cokes, and limestones which varied from 8, 10, 12, and 14 kg. Validity of this study supported by the chemical analysis which took place before and after reduction process using some tools such as XRF (X-Ray Fluoroscence), XRD (XRay Diffraction), AAS (Atomic Absorbtion Spectrometry), and Proxymate analysis. The result of this research showed an increasing trend in product’s quality as the slag basicity and the amount of limestone increased. As the slag basicity increase, the number of ferromanganese metal products were also increased until 8.2 kg FeMn and the amount of manganese element in metal phase also showed the most optimum chemical composition of ferromanganese metal (78,13 Mn- 12,65 Fe-8.93 Si). Furthermore, the energy consumption can be reduced until 9.8 kwh/kg FeMn as well as the electrodes consumption and also the efficiency percentage or % yield process can be increased up to 58.61%. Other parameters which used to support these 4-times-research plan was the temperature level which turned out to be as high as 15940C and helped the reduction process of manganese oxide into manganese metal became easier. Not only to obtain more manganese content in metal phase, but also this level of reduction temperature can reduced the amount of slag. Finally, in addition to support the optimum data, economic analysis also showed that this composition was the most profitable process with Rp 5.731,- /process as its profit.]
Fakultas Teknik Universitas Indonesia, 2015
S62268
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Rifki
Abstrak :
[Kurangnya penguasaan teknologi pengolahan bijih mangan menjadi ferromangan merupakan salah satu penyebab tingginya impor ferromangan yang dilakukan oleh industri baja nasional. Kualitas produk ferromangan dan juga pencapaian konsumsi energi listrik yang effisien per Kg ferromangan yang dihasilkan menjadi faktor penting pengembangan teknologi ini. Jumlah batubara sebagai reduktor merupakan salah satu parameter utama kesuksesan produksi yang nantinya akan dilihat berdasarkan kualitas FeMn (Kadar Mn hingga 75%) dan seberapa besar power consumption-nya. Pada penelitian ini akan dilakukan proses pembuatan ferromangan dari bahan baku bijih mangan local dengan menggunakan SAF (Submerged Arc Furnace). Variabel yang akan dipakai adalah jumlah batubara sebagai reduktor, yaitu 40.33%, 47%, 53.67%, dan 60.33%. Karakterisasi produk menggunakan XRF (input dan ouput produk), XRD (Mn Ore), dan Proksimat analisis (batubara). Hasil penelitian menunjukan dengan kenaikan jumlah reduktor maka massa produk, kadar mangan, yield product, massa off gas, konsumsi energi, dan persentase fosfor dan sulfur akan meningkat pula. Jumlah produk ferromangan tertinggi didapat pada angka 9.1 kg dengan menggunakan batubara 53.67%. kadar Mn tertinggi didapat pada angka 72% dengan pemakaian batubara 53.67% dan kadar terkecil yaitu 63.12% dengan pemakaian batubara 40.33%. Off gass tertinggi pada angka 33.5 kg dengan pemakaian batubara 60.33% menunjukkan proses reduksi yang tidak optimal, dimana proses reduksi tidak berjalan sempurna. Energi yang paling tinggi di dapatkan pada berat batubara 40.33% yaitu 12.45 Kwh/Kg FeMn, sedangkan yang paling optimum dari segi energi, yaitu didapatkan pada berat batubara 47% dengan 7.56 Kwh/Kg FeMn. %P yang paling tinggi dengan pemakaian batubara 53.67% dengan hasil 0.74% fosfor. Sedangkan untuk %S yang paling tinggi dengan pemakaian batubara 16.1 Kg dengan hasil 0.9% sulfur. Batubara dengan persentase 47% merupakan yang paling optimum apabila dilihat dari aspek ekonomi, %P %S, konsumsi energi, dan kadar mangan.;Due to lack of knowledge and capability to develop new technology for reduction of ferromanganese metal, the number of imported ferromanganese are also increasing in Indonesia. This present study will carried out new perspective to produce ferromanganese metal from Indonesian local manganese ore itself to maintain the demand of ferromanganese product for local industries. The experiment will based on medium grade manganese ore from Jember, East Java ? Indonesia and using mini submerged arc furnace (SAF) as its technology to reduce manganese ore into ferromanganese metal. Influence of various number of coal as its reductor agent have been ninvestigated. The optimized parameter has been established to obtain maximum yield. The experiments with 30 kg of manganese ore, 12 kg of limestone, and various number of coal ranging from 40.33%, 47%, 53.67%, and 60.33% have been carried out. The efforts have also been made to reduce the electrical consumption and the cost of production by using coal instead of cokes. The result showed that an increase in number of reductor increases the amount of product, manganese content, yield ratio, mass of offgas, energy consumption, phosphorus and sulfur content. Biggest number of ferromanganese which can be produced is 9.1 kg with 72% manganese content inside the metal from 53.67% coal and the smallest manganese content is 63.12%Mn from 40.33% coal. Biggest number of off gasses is 33.5 kg which came from 60.33% coal and this phenomena showed that reduction process is not efficient. Highest energy consumption came from 40.33% coal which is 12.45 kwh/kg FeMn product, and the most efficient energy is produced by 53.67% coal which is 7.56 kwh/kg FeMn product. Biggest phosphorus and sulfur content came from 53.67% coal which is 0.74%P and 0.9%S. As the last result, the most optimum research has been carried out by 47% of coal.;Due to lack of knowledge and capability to develop new technology for reduction of ferromanganese metal, the number of imported ferromanganese are also increasing in Indonesia. This present study will carried out new perspective to produce ferromanganese metal from Indonesian local manganese ore itself to maintain the demand of ferromanganese product for local industries. The experiment will based on medium grade manganese ore from Jember, East Java ? Indonesia and using mini submerged arc furnace (SAF) as its technology to reduce manganese ore into ferromanganese metal. Influence of various number of coal as its reductor agent have been ninvestigated. The optimized parameter has been established to obtain maximum yield. The experiments with 30 kg of manganese ore, 12 kg of limestone, and various number of coal ranging from 40.33%, 47%, 53.67%, and 60.33% have been carried out. The efforts have also been made to reduce the electrical consumption and the cost of production by using coal instead of cokes. The result showed that an increase in number of reductor increases the amount of product, manganese content, yield ratio, mass of offgas, energy consumption, phosphorus and sulfur content. Biggest number of ferromanganese which can be produced is 9.1 kg with 72% manganese content inside the metal from 53.67% coal and the smallest manganese content is 63.12%Mn from 40.33% coal. Biggest number of off gasses is 33.5 kg which came from 60.33% coal and this phenomena showed that reduction process is not efficient. Highest energy consumption came from 40.33% coal which is 12.45 kwh/kg FeMn product, and the most efficient energy is produced by 53.67% coal which is 7.56 kwh/kg FeMn product. Biggest phosphorus and sulfur content came from 53.67% coal which is 0.74%P and 0.9%S. As the last result, the most optimum research has been carried out by 47% of coal., Due to lack of knowledge and capability to develop new technology for reduction of ferromanganese metal, the number of imported ferromanganese are also increasing in Indonesia. This present study will carried out new perspective to produce ferromanganese metal from Indonesian local manganese ore itself to maintain the demand of ferromanganese product for local industries. The experiment will based on medium grade manganese ore from Jember, East Java – Indonesia and using mini submerged arc furnace (SAF) as its technology to reduce manganese ore into ferromanganese metal. Influence of various number of coal as its reductor agent have been ninvestigated. The optimized parameter has been established to obtain maximum yield. The experiments with 30 kg of manganese ore, 12 kg of limestone, and various number of coal ranging from 40.33%, 47%, 53.67%, and 60.33% have been carried out. The efforts have also been made to reduce the electrical consumption and the cost of production by using coal instead of cokes. The result showed that an increase in number of reductor increases the amount of product, manganese content, yield ratio, mass of offgas, energy consumption, phosphorus and sulfur content. Biggest number of ferromanganese which can be produced is 9.1 kg with 72% manganese content inside the metal from 53.67% coal and the smallest manganese content is 63.12%Mn from 40.33% coal. Biggest number of off gasses is 33.5 kg which came from 60.33% coal and this phenomena showed that reduction process is not efficient. Highest energy consumption came from 40.33% coal which is 12.45 kwh/kg FeMn product, and the most efficient energy is produced by 53.67% coal which is 7.56 kwh/kg FeMn product. Biggest phosphorus and sulfur content came from 53.67% coal which is 0.74%P and 0.9%S. As the last result, the most optimum research has been carried out by 47% of coal.]
Fakultas Teknik Universitas Indonesia, 2015
S62561
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendri Saputra
Abstrak :
[ABSTRAK
Potensi cadangan bijih mangan di Indonesia cukup besar, namun terdapat di berbagai lokasi yang tersebar di seluruh Indonesia. Komoditi ini menjadi bahan baku yang tidak tergantikan di industri baja dunia. Ferromangan (FeMn) merupakan logam paduan dengan komposisi 75% Mangan (Mn) dan 25% besi (Fe) yang umumnya digunakan pada proses peleburan besi/baja guna memperbaiki sifak-sifat mekanik dari produk yang dihasilkan. Penelitian ini dilakukan untuk mempelajari pengaruh proses pencanpuran bijih Mn kadar rendah (LG) yang berasal dari Kab. Tanggamus, Lampung (16,3 %Mn-19,2 %Fe-20,2 %Si) dengan bijih Mn kadar menengah (MG) yang berasal dari Jember, Jawa Timur (27,7 %Mn-4,4 %Fe-14,7%Si) sebagai bahan baku untuk pembuatan logam FeMn dengan kandungan minimal sebesar 50 %Mn. Penelitian ini dilakukan sebanyak 5 kali percobaan dengan variasi pada campuran bijih Mn yaitu [1] 25 %LG+75 %MG, [2] 50 %LG+50 %MG, [3] 75 %LG+25 %MG, [4] 100 %LG, dan [5] 100 %MG. Bijih mangan diproses menggunakan Submerged Arc Furnace (SAF) dengan input berupa bijih Mn sebagai bahan baku utama, kokas sebagai reduktor, dan kapur sebagai aditif. Ketiga bahan baku tersebut dilebur hingga mencapai temperatur 1500 oC. Untuk mengetahui kualitas bahan baku dan produk FeMn yang dihasilkan, dilakukan analisa seperti XRF (X-Ray Fluoroscence), XRD (X-Ray Diffraction), AAS (Atomic Absorbtion Spectrometry), dan Proksimat. Dari hasil penelitian didapatkan bahwa untuk percobaan [1] diperoleh logam FeMn sebanyak 5,2 Kg dengan kadar 54,05 %Mn, percobaan [2] diperoleh logam FeMn sebanyak 4,75 Kg dengan kadar 50,03 %Mn, percobaan [3] diperoleh logam FeMn sebanyak 4,6 Kg dengan kadar 36,44 %Mn, percobaan [4] diperoleh logam FeMn sebanyak 4,3 Kg dengan kadar 31,13 %Mn, dan percobaan [5] diperoleh logam FeMn sebanyak 12,8 Kg dengan kadar 75,19 %Mn. Pengaruh dari proses pencampuran (Mn-blend) dalam pembuatan ferromangan ini adalah semakin banyak komposisi bijih Mn kadar menengah (MG) yang digunakan, menyebabkan (a) semakin banyaknya kokas dan semakin berkurangnya kapur yang dibutuhkan, (b) meningkatnya yield, jumlah produk, serta kandungan persentase Mn dari FeMn yang dihasilkan, dan (c) semakin rendahnya konsumsi energi yang dibutuhkan. ABSTRACT
The potential reserve of manganese ore in Indonesia is very large, but it was located in different locations spread throughout Indonesia. Manganese ore is one of raw material in producing ferromanganese that is not replaceable in the world steel industry. Ferromanganese (FeMn) is an alloying metal that contained of 75% Manganese (Mn) and 25% Iron (Fe) which is generally used in the process of iron/steel making to improve its mechanical properties. In this experiment, ferromanganese production was conducted by blending two kinds of manganese ore, that was low grade Mn ore (LG) which derived from Tanggamus, Lampung (16,3 %Mn-19,2 %Fe-20,2 %Si) and medium grade Mn ore (MG) which derived from Jember, East Java (27,7 %Mn-4,4 %Fe-14,7 %Si), to obtain ferromanganese with a minimum content of 50 %Mn. The composition of Mn-blend in this experiment was [1] 25 %LG+75 %MG, [2] 50 %LG+50 %MG, [3] 75 %LG+25 %MG, [4] 100 %LG, and [5] 100 %MG. This mixed manganese ore was processed by using Submerged Arc Furnace (SAF). Cokes and limestone was added into the furnace as reductant and flux agent, respectively. Those raw materials are smelted until 1500 °C. To determine the composition of raw materials and the product of FeMn, analysis such as XRF (X-Ray Fluorescence), XRD (XRay Diffraction), AAS (Atomic Absorption Spectrometry), and proximate have to be done. From each composition of Mn-blend above in this experiment, it was obtained that [1] 5,2 Kg of FeMn with 54,05 %Mn, [2] 4,75 Kg of FeMn with 50,03 %Mn, [3] 4,6 Kg of FeMn with 36,44 %Mn, [4] 4,3 Kg of FeMn with 31,13 %Mn, and [5] 12,8 Kg of FeMn with 75,19 %Mn. The effect of Mn-blend in this ferromanganese production was by the increasing composition of the medium grade manganese ore (MG) that will cause: (a) the increasing number of cokes and the decreasing of limestone required, (b) the increasing of yield, the number of products, and also the percentage of manganese content FeMn, and (c) the decreasing of energy consumption required., The potential reserve of manganese ore in Indonesia is very large, but it was located in different locations spread throughout Indonesia. Manganese ore is one of raw material in producing ferromanganese that is not replaceable in the world steel industry. Ferromanganese (FeMn) is an alloying metal that contained of 75% Manganese (Mn) and 25% Iron (Fe) which is generally used in the process of iron/steel making to improve its mechanical properties. In this experiment, ferromanganese production was conducted by blending two kinds of manganese ore, that was low grade Mn ore (LG) which derived from Tanggamus, Lampung (16,3 %Mn-19,2 %Fe-20,2 %Si) and medium grade Mn ore (MG) which derived from Jember, East Java (27,7 %Mn-4,4 %Fe-14,7 %Si), to obtain ferromanganese with a minimum content of 50 %Mn. The composition of Mn-blend in this experiment was [1] 25 %LG+75 %MG, [2] 50 %LG+50 %MG, [3] 75 %LG+25 %MG, [4] 100 %LG, and [5] 100 %MG. This mixed manganese ore was processed by using Submerged Arc Furnace (SAF). Cokes and limestone was added into the furnace as reductant and flux agent, respectively. Those raw materials are smelted until 1500 °C. To determine the composition of raw materials and the product of FeMn, analysis such as XRF (X-Ray Fluorescence), XRD (XRay Diffraction), AAS (Atomic Absorption Spectrometry), and proximate have to be done. From each composition of Mn-blend above in this experiment, it was obtained that [1] 5,2 Kg of FeMn with 54,05 %Mn, [2] 4,75 Kg of FeMn with 50,03 %Mn, [3] 4,6 Kg of FeMn with 36,44 %Mn, [4] 4,3 Kg of FeMn with 31,13 %Mn, and [5] 12,8 Kg of FeMn with 75,19 %Mn. The effect of Mn-blend in this ferromanganese production was by the increasing composition of the medium grade manganese ore (MG) that will cause: (a) the increasing number of cokes and the decreasing of limestone required, (b) the increasing of yield, the number of products, and also the percentage of manganese content FeMn, and (c) the decreasing of energy consumption required.]
Fakultas Teknik Universitas Indonesia, 2015
S62747
UI - Skripsi Membership  Universitas Indonesia Library