Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Ngurah Putu Oka Harybuana
Abstrak :
Masalah terbesar yang terjadi di industri telekomunikasi saat ini adalah meningkatnya churn rate pelanggan.Hal ini adalah masalah yang sangat penting yang harus diselesaikan oleh perusahaan karena pelanggan yang berhenti akan berdampak pada revenue terhadap perusahaan. Penggunaan model machine learning tentunya akan dapat membantu untuk memprediksi tren pelanggan dan membuat keputusan yang tepat di masa mendatang. Untuk mendapatkan hasil yang baik, penelitian ini dianalisis dengan satu algoritma yang belum pernah dianalisis dalam studi sebelumnya untuk membuat prediksi, yaitu Deep Neural Network (D-NN). D-NN dibandingkan dengan model yang telah diuji pada penelitian sebelumnya, Random Forest dan Extreme Gradient Boosting (XGBoost). Penelitian ini menganalisis feature importance, hal ini akan membantu untuk melakukan retensi yang tepat terhadap pelanggan dengan mengetahui fitur yang berpengaruh, dan menyederhanakan proses pengumpulan data. Model yang diusulkan dilatih dan diuji melalui Google Colaboratory menggunakan TensorFlow backend. Pengujian yang telah dilakukan menghasilkan hasil yang sangat baik untuk model Deep Neural Network (D-NN), dengan proses 68 detik dan akurasi 80,62%. Extreme Gradient Boosting (XGBoost) menghasilkan akurasi 76,45% dengan waktu pemrosesan 175 detik, dan Random Forest menghasilkan 77,87% dengan waktu pemrosesan yang cukup lama hingga 529 detik. ......The biggest problem that occurs in the telecommunication industry is increased level of customer churn. This is a very important problem that must be resolved by the company because customers who stop will have an impact on company retention. The usage of the machine learning model will certainly be able to help to predict customer trends and making precise decisions in the future. To get good results, this study is analyzed with one algorithm that had never been analyzed in previous studies to make predictions, namely Deep Neural Network (D-NN). D-NN compared to models that have been tested before, Random Forest and Extreme Gradient Boosting (XGBoost). This research analyzed the importance of the features, the handling toward the selection of appropriate features, and simplified the process of gathering data. The proposed model was trained and tested over Google Colaboratory using TensorFlow backend. The testing that has been done produces very good results for the Deep Neural Network (D-NN) model, with a process of 68 seconds and an accuracy of 80.62%. Extreme Gradient Boosting (XGBoost) produces 76.45% accuracy with a processing time of 175 seconds, and random forest produces 77.87% with a sufficiently long processing time of up to 529 seconds.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Alexander Patrick
Abstrak :
Popularitas sebuah paper yang terpublikasi dapat dilihat dari jumlah sitasi yang diperoleh paper tersebut. Akan tetapi, faktor-faktor yang mendukung banyak atau sedikitnya jumlah sitasi yang diperoleh bisa bermacam-macam. Faktor-faktor tersebut merupakan fokus pencarian pada penelitian ini. Pendekatan machine learning digunakan untuk mengetahui faktor-faktor tersebut. Beberapa fitur telah diekstrak dari dataset yang berisi kumpulan paper. Metode klasifikasi digunakan dalam supervised learning dengan model yang dibentuk dari dataset yang digunakan. Algoritma Logistic Regression dipakai untuk melakukan fitting terhadap model dengan hasil daya diskriminasi sistem sebesar 74,1% yang dilihat dari luas wilayah di bawah kurva ROC (Area Under Curve/AUC). Nilai koefisien dari model Logistic Regression digunakan sebagai feature importance untuk mencari nilai pengaruh dari tiap fitur terhadap output klasifikasi baik positif maupun negatif. ......Popularity of a published paper can be indicated by its citation number. However, the factors determining the number of citation may vary. Those factors are the focus of this research. A machine learning approach is used to find out the factors. Some features are going to be extracted from a dataset of published papers. A classification method is going to be applied in a supervised learning with the machine learning model extracted from the dataset. A classification algorithm Logistic Regression is used to fit the model resulting a discrimination power of 74.1% from a calculation of area under ROC curve (AUC). A feature importance approach using coefficient score from Logistic Regression is also applied in determining the importance of each feature in determining the negative and positive classification.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanif Rahman Arifin
Abstrak :
Teknologi blockchain telah merevolusi cara transaksi digital dilakukan dengan menciptakan platform terdesentralisasi yang meningkatkan keamanan dan transparansi setiap transaksi. Ethereum, salah satu cryptocurrency terkemuka memiliki volatilitas harga yang signifikan. Hal ini menjadi tantangan bagi para pedagang untuk dapat mengambil keputusan jual/beli yang tepat. Penelitian ini bertujuan untuk mengembangkan model prediksi keputusan jual dan beli Ethereum menggunakan metode machine learning. Data yang digunakan meliputi harga dan volume perdagangan Ethereum per menit dari 1 Februari 2024 hingga 7 Maret 2024. Hasil penelitian menunjukkan bahwa model XGBoost memiliki performa terbaik dengan akurasi prediksi sebesar 92.1% dan kecepatan komputasi rata-rata 0.29 detik per prediksi. Evaluasi feature importance mengungkapkan bahwa lebih dari 50% fitur dalam model tidak signifikan dan dapat dihapus untuk meningkatkan efisiensi komputasi. Penelitian ini berhasil mencapai tujuannya dengan mengembangkan model prediksi yang akurat dan efisien untuk membantu pedagang dalam mengambil keputusan jual/beli Ethereum. ......Blockchain technology has revolutionized digital transactions by creating a decentralized platform that enhances security and transparency. Ethereum, a leading cryptocurrency, experiences significant price volatility, presenting challenges for traders in making accurate buy/sell decisions. This study aims to develop a predictive model for Ethereum buy and sell decisions using machine learning. The data utilized includes minute-by-minute price and trading volume of Ethereum from February 1, 2024, to March 7, 2024. The results indicate that the XGBoost model performs best, achieving a prediction accuracy of 92.1% and an average computation speed of 0.29 seconds per prediction. The feature importance evaluation revealed that over 50% of the features were insignificant and were removed to enhance computational efficiency. This research successfully developed an accurate and efficient predictive model, which can assist traders in making informed buy/sell decisions for Ethereum. Future research recommendations include integrating real-time sentiment data and exploring other machine learning methods to further improve model accuracy and performance.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library