"Magnesium AZ31B adalah paduan ringan dengan kekuatan spesifik tinggi yang menarik minat untuk aplikasi otomotif dan dirgantara. Penelitian ini meneliti bagaimana deformasi tarik hangat (pada suhu 50 °C, 100 °C, dan 150 °C, dibandingkan dengan suhu ruang) memengaruhi sifat mekanis, evolusi struktur mikro, dan kekerasan lembaran AZ31B setebal 1 mm, dengan tujuan mengidentifikasi kondisi pemrosesan optimal dan menjelaskan mekanisme deformasi yang mendasarinya. Spesimen “dog-bone” sesuai ASTM E646 yang dipotong dengan laser diuji tarik pada 0°, 45°, dan 90° terhadap arah rolling di keempat kondisi suhu tersebut. Kurva tegangan–regangan aktual menghasilkan nilai kekuatan luluh, UTS, regangan patah, dan eksponen pengerasan regangan. Ukuran butir diukur menggunakan mikroskop optik, dan kekerasan Vickers dicatat sebelum dan setelah deformasi. Kekuatan tarik maksimum (UTS) dan kekuatan luluh menunjukkan penurunan bergantung suhu, dari sekitar 22 MPa pada suhu ruang menjadi 17 MPa pada 150 °C. Regangan patah mencapai maksimum ~25 % pada 50 °C sebelum menurun pada suhu lebih tinggi. Diameter rata-rata butir meningkat dari ~12 µm (sebagaimana-terima) menjadi ~28 µm setelah deformasi pada 150 °C. Kekuatan Vickers menurun dari 59 HV (suhu ruang) menjadi 56 HV (150 °C). Hubungan linear kuat antara UTS dan kekerasan ditemukan (R² = 0,923). Deformasi tarik hangat melunakkan AZ31B dengan memfasilitasi mobilitas dislokasi dan pertumbuhan butir, mengurangi kapasitas pengerasan regangan, sehingga menurunkan kekuatan dan kekerasan namun meningkatkan kelenturan hingga ~50 °C. Di atas 50 °C, pertumbuhan butir berlebihan mengganggu kemampuan pembentukan, terutama pada orientasi 0° sekitar 100 °C. Korelasi UTS–HV yang kokoh (R² = 0,923) memungkinkan estimasi cepat sifat tarik dari kekerasan, menunjukkan bahwa pembentukan dekat 50 °C secara optimal menyeimbangkan retensi kekuatan dan kelentura.
Magnesium AZ31B is a lightweight alloy with high specific strength that has attracted interest for automotive and aerospace applications. This study investigates how warm tensile deformation (at 50 °C, 100 °C, and 150 °C, compared to room temperature) affects the mechanical properties, microstructural evolution, and hardness of 1 mm-thick AZ31B sheets, with the aim of identifying optimal processing conditions and clarifying the underlying deformation mechanisms. Laser-cut ASTM E646 “dog-bone” specimens were tested in tension at 0°, 45°, and 90° to rolling direction under the four temperature conditions. True stress–strain curves yielded yield strength, UTS, elongation, and strain-hardening exponent. Grain sizes were measured via optical microscopy, and Vickers hardness was recorded before and after deformation. Ultimate tensile strength (UTS) and yield strength exhibited a temperature-dependent decline, decreasing from approximately 22 MPa at room temperature to 17 MPa at 150 °C. Elongation to failure reached a maximum of ~25 % at 50 °C before decreasing at higher temperatures. Mean grain diameter increased from ~12 µm (as-received) to ~28 µm following deformation at 150 °C. Vickers hardness measurements decreased from 59 HV (RT) to 56 HV (150 °C). A strong linear relationship between UTS and hardness was identified (R² = 0.923). Warm tensile deformation softens AZ31B by promoting dislocation mobility and grain growth, reducing strainâhardening capacity, which lowers strength and hardness while increasing ductility up to ~50 °C. Above 50 °C, excessive grain coarsening impairs formability, particularly at 0° orientation around 100 °C. A robust UTS–HV correlation (R² = 0.923) enables rapid tensile property estimation from hardness, indicating that forming near 50 °C optimally balances strength retention and ductility."