Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10 dokumen yang sesuai dengan query
cover
Dudi Hermawandi
Abstrak :
Salah satu metode otomasi essay grading adalah essay grading metode LSA. LSA merepresentasikan isi kata dalam matriks dua dimensi yang besar. Bagian pemrosesan penting dari LSA adalah komponen penganalisisan bernama SVD (Singular Value Decomposition) yang mengkompresi informasi yang berkaitan dalam jumlah besar ke dalam ruang yang lebih kecil. Menggunakan teknik aljabar matriks (SVD), hubungan baru antara esai mahasiswa dan esai referensi ditentukan dan dimodifikasi untuk mewakili arti sebenarnya. SIMPLE-O adalah aplikasi penilaian esai otomatis metode LSA yang berbasis web yang dikembangkan di Indonesia. Untuk meningkatkan kualitas penilaian esai maka perlu diterapkan teknik pembobotan. Sebuah metode pembobotan merupakan susunan dari tiga buah pembobotan: pembobotan lokal (local weighting), pembobotan global (global weighting) dan normalisasi (normalization) [1]. Untuk mengimplementasikan pembobotan maka pada SIMPLE-O dilakukan perubahan pada bagian proses memasukan jawaban esai mahasiswa dan proses penilaianya. SIMPLE-OM adalah SIMPLE-O yang telah mengalami perubahan. Pada SIMPLEOM skema pembobotan yang diterapkan adalah skema pembobotan SICBI (SQRTIGFF-COSN-BNRY-IDFB). Berdasarkan hasil pengamatan dan perhitungan dari beberapa skenario pengujian, sistem aplikasi dengan pembobotan SICBI memberikan hasil yang lebih baik daripada sistem aplikasi tanpa pembobotan. Skenario pengujian yang memberikan hasil paling baik (mendekati human rater) adalah skenario yang memiliki jumlah mahasiswa terbanyak yaitu skenario 3 (20 mahasiswa). Pada skenario 3, rata-rata selisih antara penilaian sistem aplikasi dengan human rater adalah 10,9. Penerapan pembobotan akan membuat sistem aplikasi bekerja lebih lama dalam hal penilaian esai. Selain itu, beberapa hal lain yang berpengaruh pada kecepatan proses penilaian esai antara lain banyaknya kata kunci mahasiswa dan jumlah mahasiswa yang mengikui ujian.
One method of automatic essay grading is "LSA Essay Grading Method". LSA represents words contained in a huge bi-dimensional matrix. Main processing part of LSA is analyzing component that called SVD (Singular Value Decomposition) which compress the large-scaled related information into smaller scale. Using matrix algebraic method (SVD), the new relations between student?s essay and the reference essay can be determined and modified in the real meaning. SIMPLE-O is an automatic essay grading application using web-based LSA method which has been developed in Indonesia. To increase essay grading quality, it needed to apply weighting technique. Weighting methods consist of three weighting: local weighting, global weighting, and normalization [1]. To implement the weighting in SIMPLE-O, it needs to make changes in student?s answers and grading process. SIMPLE-OM is a modified SIMPLE-O. In SIMPLEOM, the weighting scheme which is being implemented is SICBI (SQRT-IGFFCOSN-BNRY-IDFD) weighting scheme. According to observation results and calculation from several testing scenario, SICBI weighting application system gives better results than application system without weighting method. The best result (approaching the human rater) is given by the testing method which has the most student participants, that is in third scenario (20 students). In this scenario, the average differences between application system grading and human rater is 10.9. Weighting implementation will make the application system work longer in essay grading. The number of word and the students also affect to the essay grading speed.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40491
UI - Skripsi Open  Universitas Indonesia Library
cover
Vanessa Deviani
Abstrak :
Simple-O merupakan sistem penilaian esai otomatis yang menerapkan algoritma Latent Semantic Analysis (LSA). Simple-O dalam penilaian hasilnya menggunakan metode pembobotan. Sebagai sistem penilaian esai otomatis, tentu saja Simple-O diharapkan agar hasil penilaiannya mirip dengan hasil penilaian secara manual (Human Raters). Metode pembobotan awal yang diterapkan pada Simple-O masih memiliki beberapa kekurangan, oleh karena itu pada skripsi kali ini akan diimplementasikan empat belas metode pembobotan (kombinasi tujuh pembobotan lokal dan dua pembobotan global) pada Simple-O dan hasilnya akan dilakukan analisa agar dapat ditentukan metode pembobotan yang mana yang paling cocok diterapkan di Simple-O. Metode pembobotan biner tanpa bobot lokal sejauh ini memiliki kemiripan yang paling tinggi dengan human raters dengan selisih perbedaan dengan human raters 9.255 poin. ......Simple-O is an automated essay grading system that complies the Latent Semantic Analysis (LSA) algorithm. Simple-O uses word weighting method in the assessment of the results. As an automated essay grading system, the assessment system in Simple-O is supposedly similar with the manual assessment (human raters). The original Simple-O weighting method still have some flaws, therefore, on this thesis will be implemented fourteen word weighting methods (the combination of seven local weightings and two global weightings) and all of the results will be analyzed to determine which weighting method have the best result to be implemented in Simple-O. Binary weighting method so far have the highest similarity with the manual assessment with the differences by 9.255 point.
Depok: Fakultas Teknik Universitas Indonesia, 2011
S797
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Rizqi Kautsar
Abstrak :
Sistem penilaian esai otomatis berbasis Latent Semantic Analysis (LSA), yang menggunakan Bahasa Indonesia memang sedang dikembangkan dalam beberapa tahun kebelakang. Untuk itu, pada skripsi ini akan dipaparkan mengenai salah satu fitur tambahan pada sistem yang akan mendeteksi kalimat pasif pada jawaban mahasiswa. Metode yang akan digunakan pada fitur ini antara lain metode Regular Expression dan metode stemming Arifin-Setiono. Dimana metode Regular Expression akan digunakan untuk mencari kata-kata yang memiliki awalan di-, sedangkan metode stemming akan digunakan untuk mencari kata dasar untuk setiap kata yang memiliki awalan di- pada jawaban, untuk kemudian dibandingkan dengan kata kunci dan kata bobot yang ada pada database jawaban. Korelasi nilai antara SIMPLE-O lama dengan SIMPLE-O baru adalah yaitu sebesar 0.987 untuk soal nomor satu, 0.986 untuk soal nomor dua dan 0.988 untuk soal nomor tiga. ...... Automated essay scoring system based on Latent Semantic Analysis (LSA), which is use for the Indonesian language is being developed within a few years ago. Therefore, in this thesis will be presented one of the additional features on the system that will detect passive sentence from the student answers. The method that will be used in this feature are Regular Expression method and Arifin-Setiono’s stemming method. Where the Regular Expression method will be used to search some words that have the prefix di-, while in the other hand, stemming method will be used to find the basis for every word that has the prefix di- on the answer, and then compare it with the table of kata_kunci and kata_bobot which is exist in the database answer. The correlation value of the old SIMPLE-O with the new SIMPLE-O is 0.987 for the first question, 0.986 for the second question and 0.988 for the third question.
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59242
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pandu Wicaksono
Abstrak :
ABSTRAK
Teknologi di bidang perangkat lunak dan perangkat keras semakin berkembang cepat. Masalah keterbatasan kapasitas suatu komputer memicu berkembangnya sebuah inovasi yang disebut dengan High Performance Computing HPC . HPC merupakan sekumpulan komputer yang digabungkan dalam sebuah jaringan dan dikoordinasi oleh software khusus. Cloud Computing merupakan paradigma yang relatif baru dalam bidang komputasi. Pada penelitian ini dilakukan pengujian terhadap performansi High Performance Computing Cluster HPCC berbasis cloud menggunakan layanan OpenStack dalam menjalankan fungsi dasar Message Passing Interface. Pengujian dilakukan menggunakan program Mpptest dan SIMPLE-O. Penggunaan server yang tidak mendukung hypervisor KVM pada pengujian point-to-point communication dapat menurunkan performansi HPCC berbasis cloud sebesar 3,1 - 12,4 dibandingkan dengan HPCC berbasis non-cloud. Pada pengujian point-to-point communication dengan 2 server yang mendukung hypervisor KVM, HPCC berbasis cloud unggul dibandingkan HPCC berbasis non-cloud sebesar 1,6 ndash; 2,7 . Pada pengujian performansi HPCC dalam melakukan fungsi MPI collective communication tidak ditemukan perbedaan berarti antara kedua cluster dimana HPCC berbasis non-cloud mengungguli HPCC berbasis cloud sebesar 0 - 1,4 . Pada pengujian menggunakan program SIMPLE-O didapati performansi HPCC berbasis cloud dan non-cloud imbang jika semua instance dijalankan dengan server yang mendukung hypervisor KVM, apabila terdapat instance yang dijalankan server tanpa dukungan KVM maka HPCC berbasis non-cloud unggul 96,2 dibandingkan HPCC berbasis cloud. Ketersedian modul KVM pada server yang menjadi host suatu instance sangat berpengaruh terhadap performansi HPCC berbasis cloud.
ABSTRACT
Software and hardware technologies have been developing rapidly. Capacity limation problems found in computers triggered a development of a new innovation called High Performance Computing HPC . HPC is a cluster of computers in a network coordinated by a special software. Cloud Computing is a new paradigm in computation field. In this research, series of test are done to find out the performance of cloud and non cloud based High Performance Computing Cluster HPCC while running basic functions of Message Passing Interface. Tests are done using Mpptest and SIMPLE O program. By using a server that does not support KVM in point to point communication test could decrease the performance of cloud based HPCC by 3,1 to 12,4 compared to non cloud based HPCC. During the test of point to point communication using 2 servers that support KVM hypervisor, cloud based HPCC is ahead of non cloud based HPCC by 1,6 to 2,7 . During the test of collective communication, there are no significant differences between performances of the two cluster, with non cloud based HPCC is ahead by 0 to 1,4 compared to cloud based HPCC. During the test using SIMPLE O program, the two cluster is even in term of performance as long as every instance is run by servers that support KVM hypervisor, if there is an instance that is run by a server that does not support KVM hypervisor then the performance of non cloud based HPCC is still ahead by 96,2 compared to cloud based HPCC. During the performance testing of HPCC while running collective communication, noticable performance difference between cloud and non cloud based HPCC was not found. The availability of KVM module in a server that is used to host an instance is really essential to the cloud based HPCC performance.
2017
S66989
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nanda Zannibua Harisma
Abstrak :
Setiap proses pembelajaran memerlukan suatu evaluasi berupa ujian, begitu pula dengan e- learning. Pada proses e- learning jenis ujian yang banyak digunakan adalah jenis ujian pilihan ganda dan isian singkat. Alasannya adalah kemudahan dalam proses penilaian, komputer yang menjadi komponen penting dalam proses e-learning lebih mudah dalam melakukan penilaian ujian pilihan ganda dan isian singkat secara akurat dibandingkan dengan melakukan penilaian jenis ujian esai. Padahal jenis ujian pilihan ganda dan isian singkat memiliki banyak kekurangan bila dibandingkan dengan jenis ujian esai. Hal inilah yang mendasari dibuatnya sistem penilaian jawaban esai secara otomatis (automated essay grading). Sistem yang dibuat merupakan sistem yang berbasiskan web dengan a lasan kemudahan pengaksesan oleh pihak user dari mana saja dan kapan saja. Dalam hal penilaian metode yang digunakan adalah metode Latent Semantic Analysis (LSA). Metode ini mempunyai ciri khas hanya mementingkan kata-kata kunci yang terkandung dalam sebuah kalimat tanpa memperhatikan karakteristik linguistiknya. Pada LSA, kata-kata direpresentasikan dalam sebuah matriks semantik dan kemudian diolah secara matematis menggunakan teknik aljabar linier Singular Value Decomposition (SVD). Walaupun metode ini relatif sederhana, namun memiliki tingkat korelasi yang cukup tinggi bila dibandingkan dengan penilaian yang dilakukan manusia secara manual. Skripsi ini membahas mengenai kinerja dari sistem penilaian esai otomatis berbasis web dengan menggunakan metode LSA dengan 3 tingkat bobot kata kunci. Pada sistem ini dilakukan pengujian mengenai kecepatan pada waktu memasukkan soal dan jawaban serta pada waktu penghitungan nilai. Pengujian tersebut dilakukan dengan menggunakan bantuan server pada localhost. Pengujian mengenai keakuratan penilaian juga dilakukan dengan cara membandingkan hasil penilaian sistem dengan human rater. Dari hasil pengujian, perbandingan penilaian dengan human rater menunjukkan angka korelasi sebesar 0,777402209 dengan rata-rata selisih nilai untuk setiap soal sebesar 17,36.
Each learning process need an evaluation in form like an exam, so also with elearning. In e-learning process type of exam that often used is multiple choice and short essay. The reason is easiness in asssessment process, computer that became important part in e- learning process is easier to grade a multiple choice and short essay exam accurately compared with an essay exam. Whereas multiple choice and short essay exam have many flaw if we compared it with long essay exam. This was the basic idea of automated essay grading. This system was made based on the web based application, the reason is web based application is easy to be accessed by user anytime from anywhere. Scoring method that is used in this system is Latent Semantic Analysis method (LSA). This method has characteristic to only emphasize keywords in a sentence without paying attention to its linguistic characteristic. In LSA, words is represented in a semantic matrix and then processed mathemathically with Singular Value Decomposition (SVD). Despite of its simpicity, this method have a quite high correlation when compared with assessment of human rater. Performance of web based automated essay grading system by using LSA method with 3 levels weight of keywords is tested here. Testing concerning speed when entering a question and answer to system and when calculating exam score are conducted in this system. Those testing is conducted by using server in localhost. Testing concerning preciseness of its grading is also carried out by comparing result of system?s grading and human rater. From result of this testing, comparison of system?s grading with human rater showed the correlation figure of 0,777402209 with average difference of score is 17,36 for every question.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40467
UI - Skripsi Open  Universitas Indonesia Library
cover
Randy Sanjaya
Abstrak :
Pada skripsi ini dikembangkan sistem dengan basis bahasa pemrograman Java untuk menilai esai dalam bahasa Indonesia menggunakan algoritma yang lebih efisien dan optimal. Algoritma ini terdiri dari 4 tahap. Pertama adalah Latent Semantic Analysis (LSA) yang digunakan untuk memperoleh dan menyimpulkan hubungan kontekstual dari arti kata suatu teks. Kedua, Single Value Decomposition SVD untuk memperoleh variasi penyebaran dari hubungan tersebut. SVD mengidentifikasi dimana variasi muncul paling banyak, sehingga memungkinkan untuk mencari pendekatan yang terbaik pada data asli menggunakan dimensi yang lebih kecil. Ketiga, Latent Semantic Indexing LSI yaitu metode pengindeksan dan pengambilan untuk mengidentifikasi pola didalam hubungan antara term dan konsep yang dimiliki didalam koleksi teks yang tidak terstruktur sehingga memperoleh vektor yang merepresentasi teks tersebut. Terakhir, Cosine Similarity Measurement CSM untuk memperoleh nilai kemiripan antara teks dengan dokumen referensi. Untuk mengatasi permasalahan tata bahasa dan kosa kata pada esai, dalam karya ini diajukan teknik koreksi otomatis untuk memeriksa kata dalam pustaka kata untuk penyetaraan kata dengan arti yang serupa ataupun kata yang tidak memiliki arti spesifik. Kemudian, algoritma jarak Jaro-Winkler digunakan untuk memeriksa kesalahan kata yang disebabkan secara tidak sengaja. Dengan jarak Jaro-Winkler, kita dapat menentukan apakah 2 buah kata dapat dikatakan serupa. Hal ini sangat penting saat memeriksa dokumen yang berisi kesalahan penulisan, karena dapat mempengaruhi hasil LSA. Dengan sistem ini, nilai yang diperoleh serupa dengan nilai berdasarkan human-rater. Dengan pustaka kata yang terdiri dari 116 kata sinonim dan 2014 kata tugas, akurasi yang dihasilkan adalah 85.082 13.423.
In this thesis, a Java based system for grading essays in Indonesian language using a more efficient and optimal algorithm is developed. This algorithm consisted of 4 stage. The first stage is Latent Semantic Analysis LSA , which is used to obtain and conclude the contextual relation of words meaning in a text. The second stage uses Single Value Decomposition SVD to obtain scatter variance from the relations. SVD identifies where variances appear at most, therefore is enabled to find the best approach to the original data using reduced dimensions. The third stage is Latent Semantic Indexing LSI which is an indexing and retrieval method to identifies patterns in relation between terms and concepts contained in unstructured text collection and results with a vector representing the text. The last stage is Cosine Similarity Measurement CSM to obtain similarity value from the text and answer document. To resolve problems stemmed from grammar and vocabulary, in this work we propose an auto correction technique to check a word from word library for equalization of word with same or no specific meaning. Then, Jaro Winkler distance algorithm is used to check word errors caused by accident when typing. With the distance, we can determine whether two strings of word are similar. This is extremely important when scanning text with typos, as it will affect the result from LSA. Using this system, the value obtained is similar to the value obtained from human rater. With word library consisting of 116 words for synonym check and 204 function words, the resulting accuracy is 85.082 13.423.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69656
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rashelia Radela Noviaindriani
Abstrak :
Skripsi ini akan membahas tentang pengembangan sistem penilaian esai otomatis untuk esai pendek bahasa Jepang dengan menerapkan metode K-Means Clustering untuk mengelompokkan setiap topik pertanyaan dan Analisis Semantik Laten untuk membuat penilaian. Sistem yang dikembangkan untuk membantu memudahkan pemeriksaan esai yang saat ini masih dilakukan secara manual. Pengembangan sistemnya sendiri dilakukan dengan menggunakan bahasa pemrograman Python. Terdapat 5 skenario pengujian yang dilakukan dengan memvariasikan jenis masukan hiragana dan romaji serta proses eliminasi stopwords. Dari hasil yang diperoleh dan analisis yang dilakukan, bentuk atau jenis input teks yang digunakan serta penggunaan parameter seperti stopwords berpengaruh terhadap akurasi penilaian yang diperoleh. Sistem penilaian esai otomatis yang dikembangkan mampu memperoleh tingkat akurasi tertinggi sebesar 89% dengan menggunakan input berupa huruf romaji dan tanpa proses eliminasi stopwords. ......This thesis will discuss about the development of an automatic essay grading system for short Japanese essays by applying the K-Means Clustering method to group each question topic and Latent Semantic Analysis to make an assessment. The system developed to help facilitate essay checking is currently still being done manually. The development of the system itself is carried out using the Python programming language. There are 5 test scenarios carried out by varying the types of hiragana and romaji inputs and the stopwords elimination process. From the results obtained and the analysis carried out, the form or type of text input used and the use of parameters such as stop words have an effect on the accuracy of the assessment obtained. The developed automatic essay scoring system was able to obtain the highest accuracy rate of 89% by using input in the form of Romaji letters and without the stopwords elimination process.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yireh Anugerah Nanang Sukabhakti
Abstrak :
Departemen Teknik Elektro sebelumnya sudah mengembangkan sistem penilai esai otomatis (SIMPLE-O) yang berbasis algoritma winnowing dan diterapkan pada bahasa Jepang. Sistem penilai esai otomatis tersebut menggunakan algortima winnowing yang berbasiskan fingerprint dan hashing untuk mendeteksi tingkat kemiripan teks. Sistem tersebut memiliki rata-rata akurasi nilai total seluruh data hingga 90.92% dengan akurasi nilai total perpeserta ujian dapat mencapai 99.91% dan akurasi perjawaban untuk tiap peserta ujian berkisar dari 60.19% hingga 100%. Penelitian kali ini berusaha untuk mencoba untuk menaikkan akurasi tersebut. Cara yang digunakan ialah menganti hashing yang digunakan dari Rolling Hash ke MD5 dan mengimplementasi synonym recognition. Hasil percobaan ini memiliki rata-rata tingkat akurasi 85.61% dengan akurasi perjawaban untuk tiap perserta ujian berkisar 68.44% hingga 99.96%
Departement of Electrical Engineering has already developed automatic essay grading system (SIMPLE-O) which utilize winnowing algorithm which is a fingerprint-based and hash-based algorithm for detecting similarity between texts. The system have result of average of total score for all students is 90.92% with accuracy for each student is up to 99.91% and accuracy for each problem ranged from 60.19% to 100%. This research will try to raise the accuracy. The proposed method is by changing the hashing used by the system from Rolling Hash to MD5 and implementing synonym recognition. The result of conducted experiment has the average of accuracy of 85.61% and the accuracy for each problem ranged from 68.44% to 99.96%.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amanda Nur Oktaviani
Abstrak :
Skripsi ini membahas mengenai rancangan untuk pengembangan sistem penilaian esai otomatis (SIMPLE-O) menggunakan Convolutional Neural Network dan Manhattan Distance sebagai penilaian pada ujian esai Bahasa Jepang yang sedang dikembangkan oleh Departemen Teknik Elektro Universitas Indonesia. Sistem ini menggunakan Convolutional Neural Network (CNN) untuk memberikan nilai pada esai Bahasa Jepang. Dari beberapa variasi yang diuji, model yang paling stabil adalam model yang memiliki layer CNN, Manhattan Distance, dan dropout dengan dropout rate sebesar 0.1, di-train selama 32 epochs dengan loss function cross-categorical entropy dan optimizer RMSprop dengan input model ditokenisasi per karakter dengan rata-rata akurasi sebesar 59.48%. ......This thesis discusses the design for the development of an automatic essay scoring system (SIMPLE-O) using the Convolutional Neural Network and Manhattan Distance as an assessment of the Japanese essay exam which is being developed by the Department of Electrical Engineering, University of Indonesia. This system uses Convolutional Neural Network (CNN) to score Japanese essays. Of the several variations tested, the most stable model is a model that has CNN, Manhattan Distance, and dropout layers with a dropout rate of 0.1, trained for 32 epochs with a loss function cross-categorical entropy and an RMSprop optimizer with model input tokenized per character on average. the average accuracy is 59.48%.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anak Agung Putri Ratna
Abstrak :
Grading is a process for decision making using information from evaluation of learning result whether using a test instrument or not[1]. Grading with essay is on option to evaluate level of knowledge of the students, but essay grading is not giving an objective view to each student. Essay grading by many of researcher is considered a good tools to evaluate result of a learning process and so, to evaluate level of intuition like synthesis and analysis. [2]. This research is intended to create an automatic essay grading which is called SIMPLE (SIsteM PeniLaian Esei otomatis) using Latent Semantic Analysis (LSA) as one of the method to extract and represent sentence using mathematical calculation or statistic from large amount of text [3]. Mathematical calculation is done by mapping with or without word from matrix group of word Furthermore, this research is done by implementing weight feature on web based automatic essay grading using Indonesian language. Testing is done by comparing result from system that using weight word and system that not using weight word Testing has succeeded with 82.56-96.42 percentage agreement with human raters for system using weight word.
Depok: Jurnal Teknologi, Vol. 20 (3) Maret 2006 : 167-176 , 2006
JUTE-20-3-Sep2006-167
Artikel Jurnal  Universitas Indonesia Library