Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 14 dokumen yang sesuai dengan query
cover
Qusyairi Ridho Saeful Fitni
"Dalam beberapa tahun terakhir, keamanan data pada sistem informasi organisasi telah menjadi perhatian serius. Banyak serangan menjadi kurang terdeteksi oleh firewall dan perangkat lunak antivirus. Untuk meningkatkan keamanan, intrusion detection systems (IDS) digunakan untuk mendeteksi serangan dalam lalu lintas jaringan. Saat ini, teknologi IDS memiliki masalah kinerja mengenai akurasi deteksi, waktu deteksi, pemberitahuan alarm palsu, dan deteksi jenis serangan baru atau belum diketahui. Beberapa studi telah menerapkan pendekatan pembelajaran mesin (machine learning) sebagai solusi, dan mendapat beberapa peningkatan. Penelitian ini menggunakan pendekatan pembelajaran ensemble (ensemble learning) yang dapat mengintegrasikan manfaat dari setiap algoritma pengklasifikasi tunggal. Pada penelitian ini, dibandingkan tujuh pengklasifikasi tunggal untuk mengidentifikasi pengklasifikasi dasar yang digunakan untuk model ensemble learning. Kemudian dataset IDS terbaru dari Canadian Institute for Cybersecurity yaitu CSE-CIC-IDS2018 digunakan untuk mengevaluasi model ensemble learning. Hasil percobaan menujukan bahwa implementasi metode ensemble learning khususnya majority voting dengan tiga algoritma dasar (gradient boosting, decision tree dan logistic regression) dapat meningkatkan nilai akurasi lebih baik dibandingkan implementasi algoritma klasifikasi tunggal, yaitu 0,988. Selanjutnya, implementasi teknik pemilihan fitur spearman-rank order correlation pada dataset CSE-CIC-IDS2018 menghasilkan 23 dari 80 fitur, dan dapat meningkatkan waktu pelatihan model, yaitu menjadi 11 menit 4 detik dibanding sebelumnya 34 menit 2 detik.

In recent years, data security in organizational information systems has become a serious concern. Many attacks are becoming less detectable by firewall and antivirus software. To improve security, intrusion detection systems (IDSs) are used to detect anomalies in network traffic. Currently, IDS technology has performance issues regarding detection accuracy, detection times, false alarm notifications, and unknown attack detection. Several studies have applied machine learning approaches as solutions. This study used an ensemble learning approach that integrates the benefits of each single classifier algorithms. We made comparisons with seven single classifiers to identify the most appropriate basic classifiers for ensemble learning. Then the latest IDS dataset from the Canadian Institute for Cybersecurity, CSE-CIC-IDS2018, was used to evaluate the ensemble learning model. The experimental results show that the implementation of the ensemble learning method, especially majority voting with three basic algorithms (gradient boosting, decision tree and logistic regression) can increase the accuracy rate better than the implementation of a single classification algorithm, which is 0.988. Furthermore, the implementation of the spearman-rank order correlation feature selection technique in the CSE-CIC-IDS2018 dataset produced 23 of the 80 features, and could increase the model training time, which was 11 minutes 4 seconds compared to 34 minutes 2 seconds before."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mendrofa, Gabriella Aileen
"Pilar adalah unit struktural penting yang digunakan untuk memastikan keselamatan penambangan di tambang batuan keras bawah tanah. Oleh karena itu, prediksi yang tepat mengenai stabilitas pilar bawah tanah sangat diperlukan. Salah satu indeks umum yang sering digunakan untuk menilai stabilitas pilar adalah Safety Factor (SF). Sayangnya, batasan penilaian stabilitas pilar menggunakan SF masih sangat kaku dan kurang dapat diandalkan. Penelitian ini menyajikan aplikasi baru dari Artificial Neural Network-Backpropagation (ANN-BP) dan Deep Ensemble Learning untuk klasifikasi stabilitas pilar. Terdapat tiga jenis ANN-BP yang digunakan untuk klasifikasi stabilitas pilar dibedakan berdasarkan activation function-nya, yaitu ANN-BP ReLU, ANN-BP ELU, dan ANN-BP GELU. Dalam penelitian ini juga disajikan alternatif pelabelan baru stabilitas pilar dengan mempertimbangkan kesesuaiannya dengan SF. Stabilitas pilar diperluas menjadi empat kategori, yaitu failed dengan safety factor yang sesuai, intact dengan safety factor yang sesuai, failed dengan safety factor yang tidak sesuai, dan intact dengan safety factor yang tidak sesuai. Terdapat lima input yang digunakan untuk setiap model, yaitu pillar width, mining height, bord width, depth to floor, dan ratio. Hasil penelitian menunjukkan bahwa model ANN-BP dengan Ensemble Learning dapat meningkatkan performa ANN-BP dengan average accuracy menjadi 86,48% dan nilai F2 menjadi 96,35% untuk kategori failed dengan safety factor yang tidak sesuai.

Pillars are important structural units used to ensure mining safety in underground hard rock mines. Therefore, precise predictions regarding the stability of underground pillars are required. One common index that is often used to assess pillar stability is the Safety Factor (SF). Unfortunately, such crisp boundaries in pillar stability assessment using SF are unreliable. This paper presents a novel application of Artificial Neural Network-Backpropagation (ANN-BP) and Deep Ensemble Learning for pillar stability classification. There are three types of ANN-BP used for the classification of pillar stability distinguished by their activation functions: ANN-BP ReLU, ANN-BP ELU, and ANN-BP GELU. This research also presents a new labeling alternative for pillar stability by considering its suitability with the SF. Thus, pillar stability is expanded into four categories: failed with a suitable safety factor, intact with a suitable safety factor, failed without a suitable safety factor, and intact without a suitable safety factor. There are five inputs used for each model: pillar width, mining height, bord width, depth to floor, and ratio. The results showed that the ANN-BP model with Ensemble Learning could improve ANN-BP performance with an average accuracy of 86.48% and an F2-score of 96.35% for the category of failed with a suitable safety factor.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Made Devinda Adyapti
"Dampak dari letak geografis Indonesia yang diapit dua samudera dan dikelilingi laut membuat Indonesia memiliki laju konveksi yang tinggi. Hal ini menyebabkan banyaknya awan konveksi dan kelimpahan hujan sepanjang tahun sehingga informasi mengenai hujan merupakan hal yang penting terutama untuk sektor pertanian. Kejadian hujan dipengaruhi oleh karakteristik awan, diantaranya ketinggian dan temperatur yang dapat diukur menggunakan instrumen radar dan satelit. Pada penelitian ini, dilakukan estimasi kejadian hujan dengan meninjau karakteristik ketinggian dan temperatur awan bulan Desember 2021 di Provinsi Lampung menggunakan tree-based ensemble learning. Hasil dari studi ini akan menunjukkan algoritma terbaik yang dapat mengklasifikasikan kejadian hujan berdasarkan ketinggian dan temperatur awan. Berdasarkan penelitian yang telah dilakukan, didapatkan hasil MCC pada Random Forest sebesar 0.125, Light Gradient Boosting Machine sebesar 0.229, Adaptive Boosting sebesar 0.135, dan Extreme Gradient Boosting sebesar 0.227. Hasil analisis menunjukkan bahwa algoritma terbaik untuk klasifikasi biner kejadian hujan berdasarkan data ketinggian dan temperatur awan adalah algoritma Light Gradient Boosting Machine.

The geographical location of Indonesia, situated between two oceans and surrounded by seas, leads to high convective activity. This results in abundant convective clouds and rainfall throughout the year, making rainfall information crucial, especially for the agricultural sector. Rainfall events are influenced by cloud characteristics, including height and temperature, which can be measured using radar and satellite instruments. In this study, rainfall events were estimated by examining the characteristics of cloud height and temperature in December 2021 in Lampung Province using tree-based ensemble learning. The results of this study will indicate the best algorithm for classifying rainfall events based on cloud height and temperature. Based on the research conducted, the MCC results were found to be 0.125 for Random Forest, 0.229 for Light Gradient Boosting Machine, 0.135 for Adaptive Boosting, and 0.227 for Extreme Gradient Boosting. The analysis results indicate that the best algorithm for binary classification of rainfall events based on cloud height and temperature data is the Light Gradient Boosting Machine algorithm.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewa Ferrouzi Diaz Zhah Pahlevi
"Pasar modal berkembang pesat di Indonesia dengan peningkatan 79 jumlah emiten saham baru dan peningkatan 17,9% jumlah investor baru. Perkembangan ini dipacu oleh Otoritas Jasa Keuangan yang meyakinkan bahwa setiap perusahaan terbuka selalu diawasi dengan cara mewajibkan perusahaan terbuka untuk menyampaikan laporan keuangan secara berkala. Akan tetapi pada kenyataannya, tindakan kecurangan laporan keuangan bukan menjadi hal yang langka. Association of Certified Fraud Examiner melaporkan bahwa 9,2% kecurangan di Indonesia merupakan kecurangan laporan keuangan dengan total kerugian hingga Rp242.260.000.000. Sementara, proses audit konvensional serta laporan yang menjadi 72% dari media deteksi saat ini membutuhkan 12 bulan untuk mendeteksi kasus kecurangan. Penelitian ini akan menggunakan metode ensemble learning berbasis optimasi metaheuristik untuk mengembangkan model deteksi kecurangan pada laporan keuangan. Beberapa metode klasifikasi digunakan untuk mengembangkan model, yaitu Random Forest dan XGBoost. Optimasi metaheuristik dengan metode Genetic Algorithm kemudian digunakan sebagai dasar dari proses hyperparameter tuning pada model tersebut. Hasil deteksi terbaik pada penelitian ini adalah model XGBoost dengan parameter teroptimasi yang menghasilkan akurasi sebesar 98,04% dan sensitivitas 99.02%.

The capital market is growing rapidly in Indonesia, gaining 79 new stock issuers and a 17.9% increase in the number of new investors in 2023. This development is driven by Otoritas Jasa Keuangan, which ensures that every public company is always monitored by requiring them to submit financial statements regularly. However, financial statement fraud is not uncommon. The Association of Certified Fraud Examiners reports that 9.2% of fraud cases in Indonesia involve financial statement fraud, with total losses amounting to Rp242,260,000,000. Meanwhile, conventional audit processes and reports, which account for 72% of current detection methods, take 12 months to detect fraud cases. This study will use an ensemble learning method based on metaheuristic optimization to develop a fraud detection model for financial statements. Several classification methods, namely Random Forest and XGBoost, are used to develop the model. Metaheuristic optimization using the Genetic Algorithm method is then applied as the basis for hyperparameter tuning in this model. The best detection result in this study is achieved by the XGBoost model with optimized parameters, yielding an accuracy of 98.04% and a sensitivity of 99.02%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
R. Ahmad Imanullah Zakariya
"Pengembangan aplikasi yang tidak dilengkapi dengan informasi detail mengenai aspek keamanan aplikasi menyebabkan pengguna mengalami kesulitan untuk menilai dan memahami risiko keamanan privasi yang mereka hadapi, sehingga banyak informasi sensitif yang terungkap tanpa sepengetahuan pengguna. Penelitian ini mengembangkan desain penilaian risiko privasi melalui pendekatan analisis statik dengan memanfaatkan permission dan beberapa atribut aplikasi (multiple application attributes), serta menggunakan majority voting ensemble learning dengan menerapkan teknik pemilihan fitur Random Forest Feature Importance untuk mendeteksi keamanan aplikasi. Nilai risiko diperoleh dari sebuah matriks risiko yang dibentuk dari dua aspek penilaian, yaitu frekuensi terjadinya risiko (likelihood) dan tingkat keparahannya (severity). Penilaian likelihood dilakukan dengan mengkombinasikan prediksi ensemble learning dan atribut aplikasi, sementara penilaian severity berdasarkan pada karakteristik dan jumlah permission. Untuk mengevaluasi model pembelajaran dan desain penilaian risiko privasi digunakan dataset CIC-AndMal2017 yang terdiri dari 2126 file APK. Jumlah data yang digunakan untuk membentuk model memiliki proporsi 80% data training dan 20% data testing, serta metode klasifikasi data yang digunakan adalah binary class (malicious dan benign). Penelitian ini menerapkan bahasa pemrograman Python dan menggunakan parameter default pada proses pembentukan model pembelajaran. Hasil percobaan menunjukkan bahwa model ensemble learning yang dibentuk dari algoritma Decision Tree, K-Nearest Neighbor, dan Random Forest memiliki performa model yang lebih baik dibandingkan single classification model, dengan accuracy sebesar 95.2%, precision 93.2%, dan F1-Score sebesar 92.4%. Penerapan teknik pemilihan fitur mampu meningkatkan efisiensi waktu selama pembelajaran model dengan total waktu sebesar 263 ms. Serta, hasil penilaian risiko mampu memberikan informasi yang komprehensif dan logis mengenai keamanan privasi aplikasi kepada pengguna. Hal ini menunjukkan bahwa desain penilaian risiko yang dibuat dapat menilai aplikasi secara efektif dan objektif.

Lack of detailed information about the application's security aspects leads to the user's inability to assess and understand the risk of privacy breaches and leads to the disclosure of a great deal of sensitive information without the user's knowledge. This study proposes a privacy risk assessment development through employing static analysis with permission and multiple application attributes and using majority voting ensemble learning with the Random Forest Feature Importance technique to detect app security. The risk score is obtained from a risk matrix based on two assessment aspects, namely the frequency of risk (likelihood) and its severity. The likelihood assessment is performed by combining ensemble learning predictions and information on multiple application attributes, while the severity assessment is performed by utilizing the number and characteristics of permissions. The dataset CIC-AndMal2017, which consists of 2126 APK files, was used to evaluate learning models and privacy risk assessment design. The amount of data used to build models consists of 80% data training and 20% data testing, while the data classification method used is binary class (malicious and benign). This study employs Python programming and implements default parameters in building a learning model. The experimental results show that ensemble learning model built from Decision Tree, K-Nearest Neighbor, and Random Forest algorithms provides better model performance than single classification models with accuracy of 95.2%, precision of 93.2%, and F1-Score of 92.4%. By applying feature selection technique, it could improve the efficiency of time used to learn the model with a total time of 263 milliseconds. Moreover, the results of the risk assessment provide comprehensive and rational information about the security of application privacy to users. This shows that the risk assessment design can assess the applications effectively and objectively. "
Jakarta: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Watulingas, Benedicto Matthew
"Indonesia, sebagai salah satu negara pengekspor ikan terbesar di dunia, menghadapi tantangan serius dalam sektor perikanan akibat illegal, unreported, unregulated (IUU) fishing. Meskipun telah ada pengawas yang ditugaskan, namun praktik ini masih ditemukan, sehingga perlu teknologi pengawasan di atas kapal. Telah dikembangkan model yang dapat mengklasifikasikan jenis ikan di kapal melalui video CCTV namun masih perlu dilengkapi dengan kemampuan memprediksi berat ikan. Dengan metode ensemble learning yang dipilih karena memiliki kinerja yang lebih baik dibanding model individual, penelitian ini bertujuan untuk membangun model prediksi berat melalui citra dari sistem CCTV. Kemampuan untuk memprediksi berat ikan akan memberikan metode bagi pemerintah untuk melakukan pengecekan apakah hasil tangkapan yang dilaporkan sesuai dengan tangkapan yang terjadi di lapangan. Dari pengujian yang dilakukan, algoritma Catboost Regression menunjukkan kinerja terbaik di antara semua model yang diuji. Pada dataset gabungan, dengan rasio data split 90:10, CatBoost mencapai  score 0.986, MAE 9.794, MSE 293.493, dan RMSE 17.132. Untuk dataset cumi dengan rasio 90:10, nilai metrik yang diperoleh adalah  0.025, MAE 18.451, MSE 660.629, dan RMSE 25.702. Sementara pada dataset ikan dengan rasio 90:10, CatBoost menunjukkan kinerja sangat baik dengan  0.980, MAE 5.825, MSE 146.713, dan RMSE 10.129. Model yang dipilih dengan kinerja yang paling baik adalah model dengan dataset ikan dengan MAE 5.825, yang berarti nilai error dari rata-rata berat ikan yang ditimbang adalah 1.29%. Hasil ini menunjukkan bahwa Catboost Regression mampu memprediksi berat ikan dengan akurasi yang tinggi dibandingkan model regresi lainnya pada dataset yang digunakan, dengan pemilihan rasio data split yang optimal.

Indonesia, as one of the largest fish-exporting countries in the world, faces serious challenges in its fisheries sector due to illegal, unreported, and unregulated (IUU) fishing. Despite having monitoring officers assigned, these practices are still found, necessitating the use of surveillance technology on vessels. A model has been developed that can classify fish species on ships using CCTV footage, but it still needs to be enhanced with the ability to predict the weight of the fish. Ensemble learning methods, chosen for their superior performance compared to individual models, are being used in this research to build a weight prediction model using images from the CCTV system. The ability to predict fish weight will provide the government with a method to verify whether the reported catches match what is caught at sea. From the tests conducted, the Catboost Regression algorithm demonstrated the best performance among all tested models. On the combined dataset with a 90:10 train-test split ratio, CatBoost achieved an  score of 0.986, MAE of 9.794, MSE of 293.493, and RMSE of 17.132. For the squid dataset with a 90:10 ratio, the metrics obtained were an  of 0.025, MAE of 18.451, MSE of 660.629, and RMSE of 25.702. Meanwhile, for the fish dataset with the same ratio, CatBoost showed excellent performance with an  of 0.980, MAE of 5.825, MSE of 146.713, and RMSE of 10.129. The best-performing model is the one with the fish dataset, achieving an MAE of 5.825, which translates to an error rate of 1.29% in the average weight of the fish weighed. These results indicate that Catboost Regression can predict fish weight with high accuracy compared to other regression models used on the dataset, with optimal data split ratio."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Karina Chandra Dewi
"Klaim asuransi merupakan salah satu elemen penting dalam bidang jasa asuransi. Klaim severity mengacu pada besarnya dana yang harus dikeluarkan untuk memperbaiki kerusakan yang terjadi. Besarnya klaim asuransi dipengaruhi oleh banyak faktor. Hal ini menyebabkan volume data menjadi sangat besar. Sehingga diperlukan suatu metode yang tepat dalam memprediksi besarnya klaim severity untuk data besar. Salah satu metode yang dapat digunakan untuk menyelesaikan permasalahan tersebut yaitu Random Forest yang merupakan salah satu metode machine learning. Tesis ini mengaplikasikan model Random Forest untuk menyelesaikan masalah prediksi besarnya klaim severity pada asuransi mobil serta menganalisis pengaruh jumlah fitur yang digunakan pada model Random Forest terhadap akurasi model sebagai alternatif solusi terkait Big Data. Hasil simulasi menunjukkan bahwa model Random Forest dapat diterapkan pada kasus prediksi klaim severity yang merupakan kasus regresi dalam konteks machine learning. Dengan menggunakan 1⁄3 dari keseluruhan fitur yang ada, model Random Forest dapat menghasilkan akurasi yang setara dengan akurasi yang diperoleh ketika menggunakan seluruh fitur dalam membangun model, yaitu sekitar 99%. Hasil ini menunjukkan skalabilitas yang baik dari Random Forest terutama ditinjau dari jumlah fitur. Sehingga, model Random Forest dapat digunakan sebagai solusi untuk masalah Big Data terkait volume data.

The insurance claim is one of the important elements in the field of insurance services. Claim severity refers to the amount of fund that must be spent to repair the damage. The amount of insurance claim is influenced by many factors. This causes the volume of data to be very large. Therefore, a suitable method is required. Random Forest, one of the machine learning methods can be implemented to handle this problem. This thesis applies the Random Forest model to predict the amount of this claim severity on car insurance. Furthermore, analysis on the effect of the number of features used on model accuracy is conducted. The simulation result show that the Random Forest model can be applied in cases of prediction of claim severity which is a case of regression in the context of machine learning. Only by using 1⁄3 of the overall features, the accuracy of Random Forest model can produce accuracy that is comparable to that obtained when using all features, which is around 99%. This result confirms the scalability of Random Forest, especially in terms of the number of features. Hence, Random Forest model can be used as a solution to Big Data problems related to data volume."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T54306
UI - Tesis Membership  Universitas Indonesia Library
cover
Diwandaru Rousstia
"Risiko serangan siber berbanding lurus dengan pertumbuhan aplikasi dan jaringan komputer. Intrusion Detection System (IDS) diimplementasikan agar dapat mendeteksi serangan siber dalam lalu lintas jaringan. Akan tetapi terdapat permasalahan pada pendeteksian serangan yang belum diketahui atau jenis serangan baru. Selain itu juga terdapat masalah kinerja tentang waktu deteksi, akurasi deteksi, dan false alarm. Dibutuhkan deteksi anomali dalam lalu lintas jaringan untuk mengurangi permasalahan tersebut dengan pendekatan machine learning. Pengembangan dan pemanfaatan IDS dengan machine learning telah diterapkan dalam beberapa penelitian sebagai solusi untuk meningkatkan kinerja dan evaluasi prediksi deteksi serangan. Memilih pendekatan machine learning yang tepat diperlukan untuk meningkatkan akurasi deteksi serangan siber. Penelitian ini menggunakan metode homogeneous ensemble learning yang mengoptimalkan algoritma tree khususnya gradient boosting tree - LightGBM. Dataset Communications Security Establishment dan Canadian Institute of Cybersecurity 2018 (CSE-CIC-IDS 2018) digunakan untuk mengevaluasi pendekatan yang diusulkan. Metode Polynom-fit SMOTE (Synthetic Minority Oversampling Technique) digunakan untuk menyelesaikan masalah ketidakseimbangan dataset. Penerapan metode spearman’s rank correlation coefficient pada dataset menghasilkan 24 fitur subset dari 80 fitur dataset yang digunakan untuk mengevaluasi model. Model yang diusulkan mencapai akurasi 99%; presisi 99,2%, recall 97,1%; F1-score 98,1%; ROC-AUC 99,1%; dan average-PR 98,1% serta meningkatkan waktu pelatihan model dari 3 menit 25,10 detik menjadi 2 menit 39,68 detik.

The risk of cyberattacks is directly proportional to the growth of applications and computer networks. An Intrusion Detection System (IDS) is implemented to detect cyber attacks in network traffic. However, there are problems detecting unknown attacks or new types of attacks. In addition, there are performance issues regarding detection time, detection accuracy, and false alarms. A machine learning approach takes anomaly detection in network traffic to reduce these problems. The development and utilization of IDS with machine learning have been applied in several studies to improve performance and evaluate attack detection predictions. Choosing the right machine learning approach is necessary to improve the accuracy of cyberattack detection. This research uses a homogeneous ensemble learning method that optimizes tree algorithms, especially gradient boosting tree - LightGBM. The Communications Security Establishment and Canadian Institute of Cybersecurity 2018 (CSE-CIC-IDS 2018) dataset evaluated the proposed approach. The Polynom-fit SMOTE (Synthetic Minority Oversampling Technique) method solved the dataset imbalance problem. The application of spearman's rank correlation coefficient method to the dataset resulted in 24 subset features of the 80 dataset features used to evaluate the model. The proposed model achieves 99% accuracy; precision 99.2%, recall 97.1%; F1-score 98.1%; ROC-AUC 99.1%; and an average-PR of 98.1% and increased the training time of the model from 3 minutes 25.10 seconds to 2 minutes 39.68 seconds."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mochammad Supriyono Ade Putra
"Pengukuran laju aliran multifase merupakan hal yang krusial dalam industri minyak dan gas. Pengukuran laju aliran menjadi sangat penting untuk optimalisasi produksi dan flow assurance sistem produksi minyak. Multiphase Flow meter (MPFM) merupakan alat yang digunakan untuk melakukan pengukuran laju aliran multifase sehingga memiliki keunggulan dapat melakukan pengukuran dan mendapatkan hasil laju aliran dalam waktu singkat. Semakin berkembangnya kecerdasan buatan, pengukuran dapat juga dilakukan secara virtual. Virtual Flow Metering (VFM) merupakan salah satu cara pengukuran laju aliran multifase dengan menggunakan data sensor yang ada di ESP, dan pengukuran MPFM. Pada penelitian ini telah dirancang model machine learning untuk estimasi laju aliran menggunakan metode super learner dengan base learner XGBoost, AdaBoost, Bagging, Random Forest, dan Extra Trees. Estimasi laju aliran yang didapat dievaluasi dan divalidasi dengan menggunakan MAE, MAPE, R squared, dan cumulative deviation plot. Berdasarkan hasil evaluasi tersebut, model super learner menunjukkan hasil yang lebih baik dibandingkan model base learner yang digunakan, dengan hasil MAE 0,63, MAPE 1,60%, R squared 97,43%, dan maksimal deviasi 12,5%.

Multiphase flow rate measurement is crucial in the oil and gas industry. Flow rate measurement is very important for optimization of production and flow assurance of oil production systems. Multiphase Flow meter (MPFM) is a tool used to measure multiphase flow rates so that it has the advantage of being able to take measurements and get flow rate results in a short time. As artificial intelligence develops, measurement can also be done virtually. Virtual Flow Metering (VFM) is a way of measuring multiphase flow rates using sensor data in the ESP and MPFM measurements. In this study, a machine learning model for flow rate estimation has been designed using the super learner method with the base learner XGBoost, AdaBoost, Bagging, Random Forest, and Extra Trees. The flow rate estimates obtained were evaluated and validated using the MAE, MAPE, R squared, and cumulative deviation plots. Based on the results of this evaluation, the super learner model shows better results than the base learner model used, with MAE 0.63, MAPE 1.60%, R squared 97.43%, and a maximum deviation of 12.5%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mendrofa, Gabriella Aileen
"Pilar adalah unit struktural penting yang digunakan untuk memastikan keselamatan penambangan di tambang batuan keras bawah tanah. Oleh karena itu, prediksi yang tepat mengenai stabilitas pilar bawah tanah sangat diperlukan. Salah satu indeks umum yang sering digunakan untuk menilai stabilitas pilar adalah Safety Factor (SF). Sayangnya, batasan penilaian stabilitas pilar menggunakan SF masih sangat kaku dan kurang dapat diandalkan. Penelitian ini menyajikan aplikasi baru dari Artificial Neural Network-Backpropagation (ANN-BP) dan Deep Ensemble Learning untuk klasifikasi stabilitas pilar. Terdapat tiga jenis ANN-BP yang digunakan untuk klasifikasi stabilitas pilar dibedakan berdasarkan activation function-nya, yaitu ANN-BP ReLU, ANN-BP ELU, dan ANN-BP GELU. Dalam penelitian ini juga disajikan alternatif pelabelan baru stabilitas pilar dengan mempertimbangkan kesesuaiannya dengan SF. Stabilitas pilar diperluas menjadi empat kategori, yaitu failed dengan safety factor yang sesuai, intact dengan safety factor yang sesuai, failed dengan safety factor yang tidak sesuai, dan intact dengan safety factor yang tidak sesuai. Terdapat lima input yang digunakan untuk setiap model, yaitu pillar width, mining height, bord width, depth to floor, dan ratio. Hasil penelitian menunjukkan bahwa model ANN-BP dengan Ensemble Learning dapat meningkatkan performa ANN-BP dengan average accuracy menjadi 86,48% dan nilai F2 menjadi 96,35% untuk kategori failed dengan safety factor yang tidak sesuai.

Pillars are important structural units used to ensure mining safety in underground hard rock mines. Therefore, precise predictions regarding the stability of underground pillars are required. One common index that is often used to assess pillar stability is the Safety Factor (SF). Unfortunately, such crisp boundaries in pillar stability assessment using SF are unreliable. This paper presents a novel application of Artificial Neural Network-Backpropagation (ANN-BP) and Deep Ensemble Learning for pillar stability classification. There are three types of ANN-BP used for the classification of pillar stability distinguished by their activation functions: ANN-BP ReLU, ANN-BP ELU, and ANN-BP GELU. This research also presents a new labeling alternative for pillar stability by considering its suitability with the SF. Thus, pillar stability is expanded into four categories: failed with a suitable safety factor, intact with a suitable safety factor, failed without a suitable safety factor, and intact without a suitable safety factor. There are five inputs used for each model: pillar width, mining height, bord width, depth to floor, and ratio. The results showed that the ANN-BP model with Ensemble Learning could improve ANN-BP performance with an average accuracy of 86.48% and an F2-score of 96.35% for the category of failed with a suitable safety factor."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>